Skip to main content
Log in

Effects of Hf, Y, and Zr on Alumina Scale Growth on NiAlCr and NiAlPt Alloys

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The effects of Hf, Y, and Zr additions on the growth of a thermally grown alumina scale formed on NiAlCr and NiAlPt alloys were investigated. Isothermal and thermal cycling oxidation experiments were carried out at 1150 °C, and cross sections of the oxidized samples were characterized using scanning electron microscopy. It was observed that single doping as well as co-doping of Hf, Y, and Zr reduces the rate of alumina scale growth on NiAlCr and NiAlPt alloys, with Hf showing a more significant effect than Y or Zr. The following possible contributing factors to these observations were assessed: (1) the ionic size of the minor alloying elements and (2) the bond strength between the doping elements and oxygen in the oxide grain boundaries in terms of formation and melting enthalpies of oxides. It was concluded that the bond strength between the doping elements and oxygen within the oxide grain boundaries plays an important role in retarding the alumina scale growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. R. L. Jones, Metallurgical and Ceramic Protective Coatings, (Chapman and Hall, London, 1996), p. 194.

    Book  Google Scholar 

  2. F. H. Stott and G. C. Wood, Materials Science and Engineering 87, 267 (1987).

    Article  CAS  Google Scholar 

  3. N. P. Padture, M. Gell and E. H. Jordan, Science 296, 280 (2002).

    Article  CAS  Google Scholar 

  4. P. Kofstad, High Temperature Corrosion, (Elsevier, London, 1988).

    Google Scholar 

  5. F. H. Stott, Materials Science Forum 251–254, 19 (1997).

    Article  Google Scholar 

  6. K. P. R. Reddy, J. L. Smialek and A. R. Cooper, Oxidation of Metals 17, 429 (1982).

    Article  CAS  Google Scholar 

  7. T. Amano, S. Yajima and Y. Saito, Transactions of the Japan Institute of Metals 20, 431 (1979).

    Article  CAS  Google Scholar 

  8. H. M. Hindam and W. W. Smeltzer, Oxidation of Metals 14, 337 (1980).

    Article  CAS  Google Scholar 

  9. R. Prescott, D. F. Mitchell, G. I. Sproule and M. J. Graham, Solid State Ionics 53–6, 229 (1992).

    Article  Google Scholar 

  10. B. A. Pint, J. R. Martin and L. W. Hobbs, Oxidation of Metals 39, 167 (1993).

    Article  CAS  Google Scholar 

  11. C. Mennicke, E. Schumann, M. Ruhle, R. J. Hussey, G. I. Sproule and M. J. Graham, Oxidation of Metals 49, 455 (1998).

    Article  CAS  Google Scholar 

  12. A. H. Heuer, Journal of the European Ceramic Society 28, 1495 (2008).

    Article  CAS  Google Scholar 

  13. A. H. Heuer and M. Zahiri Azar, Scripta Materialia 102, 15 (2015).

    Article  CAS  Google Scholar 

  14. A. H. Heuer, M. Zahiri Azar, H. Guhl, M. Foulkes, B. Gleeson, T. Nakagawa, Y. Ikuhara and M. W. Finnis, Journal of the American Ceramic Society 99, 733 (2016).

    Article  CAS  Google Scholar 

  15. S. Hayashi, T. Narita and B. Gleeson, Materials Science Forum 522–523, 229 (2005).

    Google Scholar 

  16. W. C. Johnson, Metallurgical Transactions A—Physical Metallurgy and Materials Science 8, 1413 (1977).

    Article  Google Scholar 

  17. C. M. Wang, G. S. Cargill, M. P. Harmer, H. M. Chan and J. Cho, Acta Materialia 47, 3411 (1999).

    Article  CAS  Google Scholar 

  18. J. H. Cho, M. P. Harmer, H. M. Chan, J. M. Rickman and A. M. Thompson, Journal of the American Ceramic Society 80, 1013 (1997).

    Article  CAS  Google Scholar 

  19. J. Cho, H. M. Chan, M. P. Harmer and J. M. Rickman, Journal of the American Ceramic Society 81, 3001 (1998).

    Article  CAS  Google Scholar 

  20. T. Nakagawa, I. Sakaguchi, N. Shibata, K. Matsunaga, T. Mizoguchi, T. Yamamoto, H. Haneda and Y. Ikuhara, Acta Materialia 55, 6627 (2007).

    Article  CAS  Google Scholar 

  21. A. M. Huntz, Materials Science and Engineering 87, 251 (1987).

    Article  CAS  Google Scholar 

  22. K. Przybylski, Journal of the Electrochemical Society 134, 469 (1987).

    Article  Google Scholar 

  23. R. D. Shannon, Acta Crystallographica Section A 32, 751 (1976).

    Article  Google Scholar 

  24. C. M. Wang, G. S. Cargill, H. M. Chan and M. P. Harmer, Interface Science 8, 243 (2000).

    Article  CAS  Google Scholar 

  25. I. Milas, B. Hinnemann and E. A. Carter, Journal of Materials Research 23, 1494 (2008).

    Article  CAS  Google Scholar 

  26. R. D. Shannon and C. T. Prewitt, Acta Crystallographica Section B-Structural Crystallography and Crystal Chemistry B 25, 925 (1969).

    Article  Google Scholar 

  27. A. H. Heuer, D. B. Hovis, J. L. Smialek and B. Gleeson, Journal of the American Ceramic Society 94, 2698 (2011).

    Article  CAS  Google Scholar 

  28. E. J. Kim and C. F. Chen, Physics Letters A 326, 442 (2004).

    Article  CAS  Google Scholar 

  29. M. Gaith and I. Alhayek, Reviews on Advanced Materials Science 21, 183 (2009).

    CAS  Google Scholar 

  30. R. Sangiorgi, M. L. Muolo, D. Chatain and N. Eustathopoulos, Journal of the American Ceramic Society 71, 742 (1988).

    Article  CAS  Google Scholar 

  31. D. L. Anderson and O. L. Anderson, Journal of Geophysical Research 75, 3494 (1970).

    Article  CAS  Google Scholar 

  32. Scientific Group Thermodata Europe (SGTE), Thermodynamic Properties of Inorganic Materials (Springer, 1999).

  33. R. Terki, H. Feraoun, G. Bertrand and H. Aourag, Computational Materials Science 33, 44 (2005).

    Article  CAS  Google Scholar 

  34. D. W. Stacy, D. R. Wilder and J. K. Johnston, Journal of the American Ceramic Society 55, 482 (1972).

    Article  CAS  Google Scholar 

  35. P. Aldebert and J. P. Traverse, Journal of the American Ceramic Society 68, 34 (1985).

    Article  CAS  Google Scholar 

  36. J. Adam and M. D. Rogers, Acta Crystallographica 12, 951 (1959).

    Article  CAS  Google Scholar 

  37. Y. Repelin, C. Proust, E. Husson and J. M. Beny, Journal of Solid State Chemistry 118, 163 (1995).

    Article  CAS  Google Scholar 

  38. B. Hinnemann and E. A. Carter, Journal of Physical Chemistry C 111, 7105 (2007).

    Article  CAS  Google Scholar 

  39. P. Y. Hou, Journal of the American Ceramic Society 86, 660 (2003).

    Article  CAS  Google Scholar 

  40. J. A. Nychka and D. R. Clarke, Oxidation of Metals 63, 325 (2005).

    Article  CAS  Google Scholar 

  41. D. Naumenko, V. Kochubey, L. Niewolak, A. Dymiati, J. Mayer, L. Singheiser and W. J. Quadakkers, Journal of Materials Science 43, 4550 (2008).

    Article  CAS  Google Scholar 

  42. J. D. Cawley and J. W. Halloran, Journal of the American Ceramic Society 69, C195 (1986).

    Article  Google Scholar 

  43. T. I. Mah and M. D. Petry, Journal of the American Ceramic Society 75, 2006 (1992).

    Article  CAS  Google Scholar 

  44. O. Fabrichnaya and C. Mercer, Calphad-Computer Coupling of Phase Diagrams and Thermochemistry 29, 239 (2005).

    Article  CAS  Google Scholar 

  45. L. Laversenne, C. Goutaudier, Y. Guyot, M. T. Cohen-Adad and G. Boulon, Journal of Alloys and Compounds 341, 214 (2002).

    Article  CAS  Google Scholar 

  46. K. Matsumoto, Y. Itoh and T. Kameda, Science and Technology of Advanced Materials 4, 153 (2003).

    Article  CAS  Google Scholar 

  47. J. E. Lowther, J. K. Dewhurst, J. M. Leger and J. Haines, Physical Review B 60, 14485 (1999).

    Article  CAS  Google Scholar 

  48. Y. N. Xu, Z. Q. Gu and W. Y. Ching, Physical Review B 56, 14993 (1997).

    Article  CAS  Google Scholar 

  49. S. Shang, Y. Wang and Z.-K. Liu, Applied Physics Letters 90, 101909 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the Office of Naval Research (ONR) for support of this work under the contract number N0014-07-1-0638 and the Department of Energy (DOE) under grant number DE-FE0024056.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DongEung Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D., Shang, SL., Li, Z. et al. Effects of Hf, Y, and Zr on Alumina Scale Growth on NiAlCr and NiAlPt Alloys. Oxid Met 92, 303–313 (2019). https://doi.org/10.1007/s11085-019-09928-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-019-09928-8

Keywords

Navigation