Skip to main content
Log in

Roles of Mn in the High-Temperature Air Oxidation of 9Cr Ferritic–Martensitic Steel After Severe Plastic Deformation

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Oxidation resistance of 9Cr ferritic–martensitic steel before and after cold-swaging process in air at 923 K was compared, and the oxide scales were characterized in detail by secondary ion mass spectrometry (SIMS). Both the cold-swaged sample and post-annealed samples showed considerably greater oxidation resistance than the initial as-tempered sample. Mn played a key role in scale formation of the cold-swaged sample and post-annealed sample; although the Mn content was only 0.5 wt% in the matrix, formation of Mn oxide (MnCr2O4 and Mn2O3) was favored. Roles of Mn in the oxidation behaviors of the cold-swaged sample and post-annealed sample were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R. L. Klueh, and A. T. Nelson, Journal of Nuclear Materials 371, 37 (2007).

    Article  Google Scholar 

  2. F. Rouillard, and T. Furukawa, Corrosion Science 105, 120 (2016).

    Article  Google Scholar 

  3. N. Zhang, Z. Zhu, H. Xu, X. Mao, and J. Li, Corrosion Science 103, 124 (2016).

    Article  Google Scholar 

  4. L. Tan, X. Ren, and T. R. Allen, Corrosion Science 52, 1520 (2010).

    Article  Google Scholar 

  5. L. Tan, M. Anderson, D. Taylor, and T. R. Allen, Corrosion Science 53, 3273 (2011).

    Article  Google Scholar 

  6. R. L. Klueh and D. R. Harries, High-chromium Ferritic and Martensitic Steels for Nuclear Applications, (American Society for Testing and Materials, West Conshohocken, PA, 2001).

    Book  Google Scholar 

  7. A. Kohyama, A. Hishinuma, D. S. Gelles, R. L. Klueh, W. Dietz, and K. Ehrlich, Journal of Nuclear Materials 233–237, 138 (1996).

    Article  Google Scholar 

  8. M. P. Brady, B. Gleeson, and I. G. Wright, JOM Journal of the Minerals Metals and Materials Society 52, 16 (2000).

    Article  Google Scholar 

  9. Y. H. Lu, Z. B. Wang, Y. Y. Song, and L. J. Rong, Corrosion Science 102, 301 (2016).

    Article  Google Scholar 

  10. S. Chen, X. Jin, and L. Rong, Oxidation of Metals 85, 189 (2016).

    Article  Google Scholar 

  11. Z. Xia, C. Zhang, W. Liu, and Z. Yang, ISIJ International 54, 1935 (2014).

    Article  Google Scholar 

  12. M. D. MerZ, Metallurgical Transactions A 10, 71 (1979).

    Article  Google Scholar 

  13. Z. Tőkei, K. Hennsen, H. Viefhaus and H. J. Grabke, Materials Science and Technology 16, 1129 (2000).

    Article  Google Scholar 

  14. Z. B. Wang, N. R. Tao, W. P. Tong, J. Lu, and K. Lu, Acta Materialia 51, 4319 (2003).

    Article  Google Scholar 

  15. L. Liu, Z. Yang, C. Zhang, M. Ueda, K. Kawamura, and T. Maruyama, Corrosion Science 91, 195 (2015).

    Article  Google Scholar 

  16. V. Trindade, H. Christ, and U. Krupp, Oxidation of Metals 73, 551 (2010).

    Article  Google Scholar 

  17. R. K. Singh Raman, and R. K. Gupta, Corrosion Science 51, 316 (2009).

    Article  Google Scholar 

  18. R. K. Gupta, R. K. Singh Raman, and C. C. Koch, Journal Materials Science 45, 4884 (2010).

    Article  Google Scholar 

  19. S. Chen, and L. Rong, Journal of Nuclear Materials 459, 13 (2015).

    Article  Google Scholar 

  20. S. Chen, X. Jin, and L. Rong, Materials Science and Engineering A 631, 139 (2015).

    Article  Google Scholar 

  21. K. Kaya, S. Hayashi, and S. Ukai, ISIJ International 54, 1379 (2014).

    Article  Google Scholar 

  22. A. S. Khanna, P. Rodriguez, and J. B. Gnanamoorthy, Oxidation of Metals 26, 171 (1986).

    Article  Google Scholar 

  23. Ö. N. Doğan, G. R. Holcomb, D. E. Alman, and P. D. Jablonski, Steamside Oxidation Behavior of Experimental 9%Cr Steels, DOE/NETL-IR-2008-007.

  24. D. Zhang, J. Liu, Z. Xue, and X. Mao, Surface and Coatings Technology 252, 179 (2014).

    Article  Google Scholar 

  25. R. K. Di Cerbo, and A. U. Seybolt, Journal of the American Ceramic Society 42, 430 (1959).

    Article  Google Scholar 

  26. D. J. Young, High Temperature Oxidation and Corrosion of Metals, (Elsevier, Oxford, 2008).

    Google Scholar 

  27. H. Mehrer, Diffusion in Solids, (Springer, Berlin, 2007).

    Book  Google Scholar 

  28. A. W. Bowen, and G. M. Leak, Metallurgical and Materials Transactions 1, 2767 (1970).

    Google Scholar 

  29. E. W. Hart, Acta Metallurgica 5, 597 (1957).

    Article  Google Scholar 

  30. P. Liu, W. Xing, X. Cheng, D. Li, Y. Li, and X.-Q. Chen, Physical Review B 90, 024103 (2014).

    Article  Google Scholar 

  31. P. Olsson, T. P. C. Klaver, and C. Domain, Physical Review B 81, 054102 (2010).

    Article  Google Scholar 

  32. A. Bakaev, D. Terentyev, X. He, E. E. Zhurkin, and D. Van Neck, Journal of Nuclear Materials 451, 82 (2014).

    Article  Google Scholar 

  33. F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, (Elsevier, Oxford, 2004).

    Google Scholar 

  34. R. E. Lobnig, H. P. Schmidt, K. Hennesen, and H. J. Grabke, Oxidation of Metals 37, 81 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shenghu Chen or Lijian Rong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Rong, L. Roles of Mn in the High-Temperature Air Oxidation of 9Cr Ferritic–Martensitic Steel After Severe Plastic Deformation. Oxid Met 89, 415–428 (2018). https://doi.org/10.1007/s11085-017-9796-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-017-9796-3

Keywords

Navigation