Skip to main content
Log in

Improved Oxidation Resistance of a New Aluminum-Containing Austenitic Stainless Steel at 800 °C in Air

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation resistance of austenitic stainless steels modified with various aluminum contents was investigated. The weight gain per unit area is in parabolic relation to oxidation time, and the oxidation rate significantly decreases with increased aluminum content. Outer layer oxides of austenitic stainless steel transform from Cr2O3 to a composite oxide layer comprising Cr and Al, and more dense Al-containing oxides formed with increasing the added Al contents. Since the diffusion of element Al is enhanced and the diffusion of element Cr is inhibited, the oxides enriched in Al dramatically contribute to the improved oxidation resistance of austenitic stainless steels at high temperature. The possible oxidation mechanisms are also proposed based on microstructural observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D. P. Hanak, C. Biliyok and V. Manovic, Applied Energy 151, 2015 (258).

    Article  Google Scholar 

  2. R. Mikulandrić, D. Lončar, D. Cvetinović and G. Spiridon, Energy 57, 2013 (55).

    Article  Google Scholar 

  3. D. Pudasainee, J. H. Kim, S. H. Lee, J. M. Park, H. N. Jang, G. J. Song and Y. C. Seo, Asia-Pacific Journal of Chemical Engineering 5, 2010 (299).

    Article  Google Scholar 

  4. F. Lin, S. Cheng and X. Xie, Energy Materials Materials Science & Engineering for Energy Systems 3, 2008 (201).

    Article  Google Scholar 

  5. F. Masuyama, ISIJ International 41, 2001 (612).

    Article  Google Scholar 

  6. R. Viswanathan, R. Purgert, S. Goodstine, J. Tanzosh, G. Stanko, J. P. Shingledecker, and B. Vitalis, International Conference on Advances in Materials Technology, Vol. 1 (2008).

  7. R. Viswanathan, K. Coleman and U. Rao, International Journal of Pressure Vessels & Piping 83, 2006 (778).

    Article  Google Scholar 

  8. J. C. Rosser, M. I. Bass, C. Cooper, T. Lant, P. D. Brown, B. J. Connolly and H. E. Evans, Materials at High Temperatures 29, 2012 (95).

    Article  Google Scholar 

  9. J. Jianmin, M. Montgomery, O. H. Larsen and S. A. Jensen, Materials & Corrosion 56, 2005 (542).

    Article  Google Scholar 

  10. T. Dudziak, M. Łukaszewicz, N. Simms and J. R. Nicholls, Corrosion Engineering Science and Technology 50, 2015 (272).

    Article  Google Scholar 

  11. J. Fu, N. Li, Q. Zhou and P. Guo, Oxidation of Metals 83, 2015 (317).

    Article  Google Scholar 

  12. J. Yan, Y. Gu, F. Sun, Y. Xu, Y. Yuan, J. Lu, Z. Yang and Y. Dang, Materials Science and Engineering A 675, 2016 (289).

    Article  Google Scholar 

  13. E. J. Opila, Materials Science Forum 461, 2004 (765).

    Article  Google Scholar 

  14. H. Asteman, J. E. Svensson, M. Norell and L. G. Johansson, Oxidation of Metals 54, 2000 (11).

    Article  Google Scholar 

  15. H. Asteman, J. E. Svensson and L. G. Johansson, Corrosion Science 44, 2002 (2635).

    Article  Google Scholar 

  16. S. R. J. Saunders, M. Monteiro and F. Rizzo, Progress in Materials Science 53, 2008 (775).

    Article  Google Scholar 

  17. J. Yuan, W. Wang, H. Zhang, L. Zhu, S. Zhu and F. Wang, Corrosion Science 109, 2016 (36).

    Article  Google Scholar 

  18. M. P. Brady, Y. Yamamoto, M. L. Santella, P. J. Maziasz, B. A. Pint, C. T. Liu, Z. P. Lu and H. Bei, JOM-Journal of Metals Minerals, and Material Society 60, 2008 (12).

    Article  Google Scholar 

  19. Y. F. Yan, X. Q. Xu, D. Q. Zhou, H. Wang, Y. Wu, X. J. Liu and Z. P. Lu, Corrosion Science 77, 2013 (202).

    Article  Google Scholar 

  20. D. W. Yun, S. M. Seo, H. W. Jeong and Y. S. Yoo, Corrosion Science 83, 2014 (176).

    Article  Google Scholar 

  21. X. Zhang, L. Fan, Y. Xu, J. Li, X. Xiao and L. Jiang, Materials and Design 65, 2015 (682).

    Article  Google Scholar 

  22. S. Tang, S. Zhu, X. Tang, H. Pan, X. Chen and Z. D. Xiang, Corrosion Science 80, 2014 (374).

    Article  Google Scholar 

  23. Y. Xu, X. Zhang, L. Fan, J. Li, X. Yu, X. Xiao and L. Jiang, Corrosion Science 100, 2015 (311).

    Article  Google Scholar 

  24. Y. Yamamoto, M. P. Brady, Z. P. Lu, P. J. Maziasz, C. T. Liu, B. A. Pint, K. L. More, H. M. Meyer and E. A. Payzant, Science 316, 2007 (433).

    Article  Google Scholar 

  25. X. Xu, X. Zhang, G. Chen and Z. Lu, Materials Letters 65, 2011 (3285).

    Article  Google Scholar 

  26. X. Xu, X. Zhang, X. Sun and Z. Lu, Corrosion Science 65, 2012 (317).

    Article  Google Scholar 

  27. J. Wang, Z. Liu, H. Bao and S. Cheng, Journal of Iron and Steel Research International 20, 2013 (113).

    Article  Google Scholar 

  28. J. Jiang and L. Zhu, Materials Science & Engineering A 539, 2012 (170).

    Article  Google Scholar 

  29. D. Q. Zhou, W. X. Zhao, H. H. Mao, Y. X. Hu, X. Q. Xu, X. Y. Sun and Z. P. Lu, Materials Science & Engineering A 622, 2015 (91).

    Article  Google Scholar 

  30. C. Chi, H. Yu, J. Dong, W. Liu, S. Cheng, Z. Liu and X. Xie, Progress in Natural Science: Materials International 22, 2012 (175).

    Article  Google Scholar 

  31. V. T. Ha and W. S. Jung, Materials Science & Engineering A 558, 2012 (103).

    Article  Google Scholar 

  32. X. Chen, J. F. Stubbins, P. Hosemann and A. M. Bolind, Journal of Nuclear Materials 398, 2010 (172).

    Article  Google Scholar 

  33. P. K. Huang, J. W. Yeh, T. T. Shun and S. K. Chen, Advanced Engineering Materials 6, 2004 (74).

    Article  Google Scholar 

  34. F. J. Wang, Y. Zhang and G. L. Chen, Journal of Alloys & Compounds 478, 2009 (321).

    Article  Google Scholar 

  35. M. Hasegawa, Chapter 3.3–Ellingham Diagram Treatise on Process Metallurgy: Process Fundamentals, Vol. 1 (2014), p. 507.

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant No. 51371123), the National Natural Science Foundation of Shanxi province (Grant No. 2014011002), the Research Fund for the Doctoral Program of Higher Education of China (20131402110003) and Shanxi Province Science Foundation for Youths (201601D202033).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Wang or Peide Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, Y., Wang, J., Zhang, Z. et al. Improved Oxidation Resistance of a New Aluminum-Containing Austenitic Stainless Steel at 800 °C in Air. Oxid Met 88, 301–314 (2017). https://doi.org/10.1007/s11085-017-9738-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-017-9738-0

Keywords

Navigation