Skip to main content
Log in

Systematic Assessment of the Influence of Mo Concentration on the Oxygen Ingress in Ti–Mo System During High Temperature Oxidation

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

To understand the role of composition in the oxidation behavior of Ti–Mo system and to evaluate the extent of oxygen ingress into the metal substrate during high temperature exposure, a compositionally graded Ti–xMo specimen (0 ≤ x ≤ 12 wt% Mo) was prepared using an additive manufacturing technique, solutionized and then subjected to oxidation tests at 650 °C for different exposure times. The depth of oxygen diffusion, across the composition range, was assessed via change in the local hardness and the results were coupled with quantitative measurement of the oxygen concentration. The concentration of O in the α phase was reduced by 90 % after a short distance of 16 μm from the metal/oxide interface while it remained more or less the same in β phase. The solubility of Mo in α phase also approached zero near the surface as O changed the partition coefficient of this element between α and β phases. It was shown that the addition of Mo reduces the solubility of O in the metal substrate which in turn retards the transition point from parabolic to the linear oxidation stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Unless otherwise specified, all compositions are in wt%.

References

  1. P. Kofstad, Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides, (Wiley, New York, 1972).

    Google Scholar 

  2. I. Menzies and K. Strafford, J. Less Common Met. 12, 85 (1967).

    Article  Google Scholar 

  3. P. Samimi, Y. Liu, I. Ghamarian and P. C. Collins, Corrosion Science 89, 295 (2014).

    Article  Google Scholar 

  4. C. Shamblen and T. Redden, Air Contamination and Embrittlement of Titanium Alloys, (General Electric Co., Cincinnati, 1970).

    Book  Google Scholar 

  5. J. Williams, A. Sommer and P. Tung, Metall. Trans. 3, 2979 (1972).

    Article  Google Scholar 

  6. M. Imam, Microst. Prop. Relatsh. Titan. Alloys 107, 107 (1994).

  7. P. Kofstad, High-Temperature Oxidation of Metals, (Wiley, New York, 1966).

    Google Scholar 

  8. H. Conrad, Progress in Materials Science 26, 123 (1981).

    Article  Google Scholar 

  9. P. Samimi, Y. Liu, I. Ghamarian, D. A. Brice and P. C. Collins, Corrosion Science 97, 150 (2015).

    Article  Google Scholar 

  10. J. Unnam, R. Shenoy and R. Clark, Oxidation of Metals 26, 231 (1986).

    Article  Google Scholar 

  11. P. Kofstad, K. Hauffe and H. Kjollesdal, Acta Chemica Scandinavica 12, 239 (1958).

    Article  Google Scholar 

  12. R. T. Bryant, J. Less Common Met. 4, 62 (1962).

    Article  Google Scholar 

  13. R. I. Jaffee and N. E. Promisel, The science, technology, and application of titanium: Proceedings, Pergamon, 1970.

  14. H. Dong and X. Li, Materials Science and Engineering A 280, 303 (2000).

    Article  Google Scholar 

  15. A. M. Chaze and C. Coddet, Journal Materials Science 22, 1206 (1987).

    Article  Google Scholar 

  16. Y. Shida and H. Anada, Corrosion Science 35, 945 (1993).

    Article  Google Scholar 

  17. J. Fanning, Min. Met. Mater. Soc. (USA) 397, 397 (1993).

  18. P. C. Collins, A Combinatorial Approach to the Development of Composition-Microstructure-Property Relationships in Titanium Alloys Using Directed Laser Deposition, (The Ohio State University, Columbus, 2004).

    Google Scholar 

  19. B. H. Collins, A Combinatorial Approach to the Development of a Creep Resistant Beta Titanium Alloy, (The Ohio State University, Columbus, 2008).

    Google Scholar 

  20. R. Banerjee, P. C. Collins, D. Bhattacharyya, S. Banerjee and H. L. Fraser, Acta Materialia 51, 3277 (2003).

    Article  Google Scholar 

  21. P. Samimi, Y. Liu, I. Ghamarian, J. Song and P. C. Collins, Acta Materialia 69, 92 (2014).

    Article  Google Scholar 

  22. M. K. Miller, Atom Probe Tomography: Analysis at the Atomic Level, (Springer, New York, 2012).

    Google Scholar 

  23. H. Kuhn, D. Medlin and A. I. H. Committee, Mechanical Testing and Evaluation, (ASM International, Materials Park, 2000).

    Google Scholar 

  24. Y. J. Kim, B. J. Choi, Y. M. Ryu, B. S. Han, S. Y. Sung, S. H. Noh and C. S. Hahn, Advanced Materials Research 26, 519 (2007).

    Google Scholar 

  25. H. Guleryuz and H. Cimenoglu, J. Alloys Compd. 472, 241 (2009).

    Article  Google Scholar 

  26. W. P. Roe, H. R. Palmer and W. R. Opie, Trans. ASM 52, 191 (1960).

    Google Scholar 

  27. R. Jaffee, H. Ogden and D. Maykuth, Trans. Am. Inst. Mining Metall. Eng. 188, 1261 (1950).

    Google Scholar 

  28. E. Bumps, H. Kessler and M. Hansen, Trans. ASM 45, 1008 (1953).

    Google Scholar 

  29. A. Jenkins, J. Inst. Metals 82, 213 (1954).

  30. L. Glikman, V. Deryabina, N. Kolgatin, I. Bytenskii, V. Teodorovich and N. Teplov, Titan. Alloys Isr. Prog. Sci. Transl. Jerus. 122, 122 (1966).

  31. J. Reynolds, H. Ogden and R. Jaffee, Trans. Am. Soc. Met. 49, 280 (1957).

    Google Scholar 

  32. M. Hansen, R. P. Elliott and F. A. Shunk, Constitution of binary alloys. First-supplement, (McGraw-Hill, New York, 1965).

    Google Scholar 

  33. T. Hurlen, J. Inst. Met. 89, 128 (1960).

    Google Scholar 

  34. P. Kofstad, P. Anderson and O. Krudtaa, J. Less Common Met. 3, 89 (1961).

    Article  Google Scholar 

  35. C. J. Rosa. Report for the Naval Air Systems Command Department of the Navy University of Cinannati, 1972.

  36. N. Birks, G. H. Meier and F. S. Pettit, Introduction to the High Temperature Oxidation of Metals, (Cambridge University Press, Cambridge, 2006).

    Book  Google Scholar 

  37. S. Andersson, B. Collen, U. Kuylenstierna and A. Magneli, Acta Chemica Scandinavica 11, 1641 (1957).

    Article  Google Scholar 

  38. G. Viswanathan, E. Lee, D. M. Maher, S. Banerjee and H. L. Fraser, Acta Materialia 53, 5101 (2005).

    Article  Google Scholar 

  39. S. R. Kalidindi and S. J. Vachhani, Current Opinion in Solid State and Materials Science 18, 196 (2014).

    Article  Google Scholar 

Download references

Acknowledgments

This work was conducted within the NSF I/UCRC Center for Advanced Non-Ferrous Structural Alloys (CANFSA) which is a joint industry-university center between the Colorado School of Mines and the University of North Texas. The authors gratefully acknowledge the support of NSF (Award Number 1134873) and the support and active mentorship of the industrial partners. The authors also gratefully acknowledge the facilities available at the University of North Texas’ Center for Advanced Research and Technology (CART).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Samimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samimi, P., Brice, D.A., Ghamarian, I. et al. Systematic Assessment of the Influence of Mo Concentration on the Oxygen Ingress in Ti–Mo System During High Temperature Oxidation. Oxid Met 85, 357–368 (2016). https://doi.org/10.1007/s11085-015-9600-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-015-9600-1

Keywords

Navigation