Skip to main content
Log in

Microstructure and High Temperature Oxidation Performance of Silicide Coating on Nb-Based Alloy C-103

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The microstructure and oxidation resistance of NbSi2 coating formed on Nb-based alloy C-103 by a pack siliconization process have been studied. The as-formed coating consists of an outer NbSi2 layer and an inner Nb5Si3 layer. A NbSi2–Nb5Si3 two-phase zone is also present between the above two layers. Weight-change data obtained under isothermal and cyclic oxidation in air at 1100 and 1300°C, suggests that the coating gives oxidation protection up to about 4 h. The oxide scale that formed on the coating during oxidation exposure consists of an outer glassy silica layer and an inner Nb2O5-silica mixed layer. Nb2O5 phase is also present in the outer silica scale in the form of elongated particles. Oxidation protection is achieved primarily by the presence of the glassy silica layer on the surface. Spallation of this layer during thermal cycling causes significant reduction in the protective life of the coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. E. A. Loria, Journal of Metals 7, 22 (1987).

    Google Scholar 

  2. R. A. Perkins and G. H. Meier, Journal of Metals 8, 17 (1990).

    Google Scholar 

  3. C. S. Giggins and F. S. Pettit, Journal of the Electrochemical Society 118, 1782 (1971).

    Article  CAS  Google Scholar 

  4. T. P. Chow, K. Hamzeh, and A. J. Steckl, Journal of Applied Physics 54(5), 2716 (1983).

    Article  CAS  ADS  Google Scholar 

  5. R. Bianco, M. A. Harper, and R. A. Rapp, Journal of Mineral Metals and Material Society (JOM) 11, 68 (1991).

    Google Scholar 

  6. Y. Li, W. Soboyejo, and R. A. Rapp, Metallurgical Materials Transactions B 30(3), 495 (1999).

    Article  CAS  Google Scholar 

  7. M. R. Jackson, US Patent 4904546, (1990).

  8. M. Levy, J. J. Falco, and R. B. Herring, Journal of Less Common Metals 34, 321 (1974).

    Article  CAS  Google Scholar 

  9. M. Vilasi, M. Francois, R. Podor, and J. Steinmetz, Journal of Alloys and Compounds 264, 244 (1998).

    Article  CAS  Google Scholar 

  10. M. Jackson, R. Robert, and A. Melinda, US Patent 5721061, (1998).

  11. S. Priceman and L. Sama, Electrochemical Technology 6(9–10), 315 (1968).

    CAS  Google Scholar 

  12. R. O. Suzuki, M. Ishikawa, and K. Ono, Journal of Alloys and Compounds 306, 285 (2000).

    Article  CAS  Google Scholar 

  13. R. O. Suzuki, M. Ishikawa, and K. Ono, Journal of Alloys and Compounds 336, 280 (2002).

    Article  CAS  Google Scholar 

  14. J. A. Shields Jr., Surface Engineering, ASM Handbook, Vol. 5, revised by J. A. Shields (1999), p. 856.

  15. L. L. Seigle, in Surface Engineering: Surface Modification of Materials, eds. R. Kossowsky and S. C. Singhal (Martinus Nijhoff Publishing, Dordrecht, 1984), p. 345.

    Google Scholar 

  16. R. W. Barlett and R. P. Gage, Transactions Metallurgical Society AIME 233, 968 (1965).

    Google Scholar 

  17. J. Guille and L. Matini, Journal of Material Science Letters 7, 952 (1988).

    Article  CAS  Google Scholar 

  18. B. V. Cockeram, Surface Coating Technology 76–77, 20 (1995).

    Article  Google Scholar 

  19. S. Majumdar, T. P. Sengupta, G. B. Kale, and I. G. Sharma, Surface Coating Technology 200, 3713 (2006).

    Article  CAS  Google Scholar 

  20. J. E. Restall, Journal of Alloys and Compounds 16, 11 (1968).

    CAS  Google Scholar 

  21. H. Baker, ASM Handbook, Vol. 3 (ASM International, Ohio, 1992), p. 2.295.

  22. X. Tian and X. Guo, Surface Coating Technology 203, 1161 (2009).

    Article  CAS  Google Scholar 

  23. Md. Z. Alam and D. K. Das, Journal of Alloys and Compounds 487, 335 (2009).

    Article  CAS  Google Scholar 

  24. C.M. Packer, Proceedings of the Workshop on the Oxidation of High-Temperature Intermetallics, eds. T. Grobstein and J. Doychak (1988), p. 235.

  25. S. Govindarajan, B. Mishra, D. L. Olson, J. J. Moore, and J. Disam, Surface Coating Technology 76–77, 7 (1995).

    Article  Google Scholar 

  26. S. J. Grisaffe and S. R. Levine, US Patent 3931447 (1976).

  27. H. S. Kim, J. K. Yoon, G. H. Kim, J. M. Doh, S. I. Kwun, and K. T. Hong, Intermetallics 16, 360 (2008).

    Article  Google Scholar 

  28. C. Milanese, V. Buscaglia, F. Maglia, and U. A. Tamburini, Acta Materialia 51, 4837 (2003).

    Article  CAS  Google Scholar 

  29. D. K. Das, M. Roy, Vakil. Singh, and S. V. Joshi, Material Science and Technologgy 15, 1199 (1999).

    CAS  Google Scholar 

  30. J. Maas, G. Bastin, F. V. Loo, and R. Metselaar, Z Metallkunde 75, 140 (1984).

    CAS  Google Scholar 

  31. F. M. d’Heurle, P. Gas, and J. Philibert, Diffusion Defect Data, Pt. A, Defect Diffusion Forum 529, 143 (1997).

    Google Scholar 

  32. M. Salamon and H. Mehrer, Diffusion Defect Data. Pt. A, Defect Diffusion Forum 161, 216 (2000).

    Google Scholar 

  33. R. Pichoir, in Materials and Coatings to Resist High Temperature Corrosion, eds. D. R. Holmes and A. Rahmel (Applied Science Publishers, London, 1978), p. 271.

    Google Scholar 

  34. D. K. Das, V. Singh, and S. V. Joshi, Metallurgical Material Transaction A 29A, 2173 (1998).

    Article  CAS  Google Scholar 

  35. S. Shankar, and L. L. Seigle, Metallurgical Material Transaction A 9, 1467 (1978).

    Article  CAS  ADS  Google Scholar 

  36. P. Kofstad, High Temperature Corrosion (Elsevier Applied Science Publishers, London, 1988), p. 315.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the assistance provided by the XRD, SEM and EPMA groups of DMRL for characterization of the coating. They are thankful to Director, DMRL, for his permission to publish the present work. This research work has been sponsored by the Defence Research and Development Organization (DRDO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Zafir Alam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alam, M.Z., Rao, A.S. & Das, D.K. Microstructure and High Temperature Oxidation Performance of Silicide Coating on Nb-Based Alloy C-103. Oxid Met 73, 513–530 (2010). https://doi.org/10.1007/s11085-010-9190-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-010-9190-x

Keywords

Navigation