Skip to main content
Log in

Oxidation of Ti3SiC2 between 900 and 1200 °C in Air

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Ti3SiC2 materials were synthesized by hot pressing using a new starting-material system consisting of a TiCx(x=0.6)/Si powder mixture. The oxidation of Ti3SiC2 at temperatures between 900 and 1200 °C in air for up to 100 h resulted in the formation of an outer TiO2 layer, an intermediate SiO2-rich layer and an inner (TiO2 + SiO2) mixed layer. During oxidation, Ti diffused outwards to form the outer TiO2 layer, and oxygen transported inwards to form the inner (TiO2 + SiO2) mixed layer. At the same time, the carbon in Ti3SiC2 escaped into the air. Below the scale, there was a narrow oxygen-affected zone, The oxidation at the scale-matrix interface proceeded by the disintegration of the lamellar Ti3SiC2 grains to form crystallites with a size of a few tens of nanometers containing oxygen. The detailed scale characteristics and oxidation mechanism are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  1. Barsoum M. W., El-Raghy T. (1996) J. Am. Ceram. Soc. 79:1953

    Article  CAS  Google Scholar 

  2. Barsoum M. W., El-Raghy T., Ogbuji L. U. J. T. (1997) J. Electrochem. Soc. 144:2508

    Article  CAS  Google Scholar 

  3. Gao N.F., Miyamoto Y., Zhang D. (1999) J. Mater. Sci. 34:4385

    Article  CAS  Google Scholar 

  4. Barsoum M. W., Ho-Duc L. H., Radovic M., El-Raghy T. (2003) J. Electrochem. Soc. 150:B166

    Article  CAS  Google Scholar 

  5. Sun Z., Zhou Y., Li M. (2001) Corros. Sci. 43:1095

    Article  CAS  Google Scholar 

  6. Sun Z., Zhou Y., Li M. (2001) Acta Mater. 49:4347

    Article  CAS  Google Scholar 

  7. Radhakrishnan R., Williams J. J., Akinc M. (1999) J. Alloys Compd. 285:85

    Article  CAS  Google Scholar 

  8. Racault C., Langlais F., Naslain R. (1994) J. Mater. Sci. 29:3384

    Article  CAS  Google Scholar 

  9. Chen T., Green P. M., Jordan J. L., Hampikian J. M., Thadhani N. N. (2002) Metall. Mater. Trans. 33A:1737

    CAS  Google Scholar 

  10. Feng A., Orling T., Munir Z. A. (1999) J. Mater. Res. 14:925

    CAS  Google Scholar 

  11. Gao N. F., Miyamoto Y., Zhang D. (2002) Mater. Lett. 55:61

    Article  CAS  Google Scholar 

  12. Tong X., Okano T., Iseki T., Yano T. (1995) J. Mater. Sci. 30:3087

    Article  CAS  Google Scholar 

  13. Li S. B., Cheng L. F., Zhang L. T. (2003) Comp. Sci.Technol. 63:813

    Article  CAS  Google Scholar 

  14. Li S. B., Cheng L. F., Zhang L. T. (2003) Mater. Sci. Eng A341:112

    CAS  Google Scholar 

  15. Li S. B., Xie J. X., Zhang L. T., Cheng L. F. (2003) Mater. Lett. 57:3048

    Article  CAS  Google Scholar 

  16. Liu G. M., Li M. S., Zhou Y. C., Zhang Y. M. (2002) Mater.Res. Innovat. 6: 226

    Article  CAS  Google Scholar 

  17. Liu G. M., Li M. S., Zhang Y., Zhou Y. C. (2003) Mater. Sci. Eng. A360:408

    CAS  Google Scholar 

  18. Yang S. L., Sun Z. M., Hashimoto H., Park Y. H., Abe T. (2003) Oxid. Met. 59:155

    Article  CAS  Google Scholar 

  19. Zhou Y. C., Dong H. Y., Wang X. H. (2004) Oxid. Met. 61:365

    Article  CAS  Google Scholar 

  20. Perkins R. A., Chiang K. T., Meier G. H., Miller R. (1989) In: Grobstein T., Doychak J. (eds) Oxidation of High-Temperature Intermetallics. TMS Warrendale, PA, p. 157

    Google Scholar 

  21. Kofstad P. (1996) High Temperature Oxidation Metals. Wiley, NY, p. 175

    Google Scholar 

  22. Chiang Y. M., Birnie III D. P., Kingery W. D. (1996) Physical Ceramics. John Wiley Sons, NY, p. 109

    Google Scholar 

  23. Kofstad P. (1995) Oxid. Met. 44: 3

    Article  CAS  Google Scholar 

  24. Lee D. B., Lee Y. C., Kim Y. J., Park S. W. (2000) Oxid. Met. 54:575

    Article  CAS  Google Scholar 

  25. Niu Y., Gesmundo F., Viani F., Wu W. (1997) Oxid. Met. 48:21

    Article  Google Scholar 

  26. Lee D. B., Woo J. H., Park S. W. (1999) Mater. Sci. Eng. A268:202

    CAS  Google Scholar 

  27. Lee D. B., Woo S. W. (2005) Intermetallics, 13:169

    Article  CAS  Google Scholar 

  28. Melsheimer S., Fietzek M., Kolarik V., Rahmel A., Schutze M. (1997) Oxid. Met. 47:139

    Article  CAS  Google Scholar 

  29. Sun Z., Zhou Y., Li M. (2002) Oxid. Met. 57:379

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant (no. R-11-2000-086-0000-0) from the Center of Excellency Program of the KOSEF, and by a grant (no. 05K1501-00610) from “Center for Nano Structured Materials Technology” under: 21st Century Frontier R&D Program” of the MOST, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. B. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, D.B., Park, S.W. Oxidation of Ti3SiC2 between 900 and 1200 °C in Air. Oxid Met 67, 51–66 (2007). https://doi.org/10.1007/s11085-006-9043-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-006-9043-9

Keywords

Navigation