Skip to main content
Log in

Design and numerical analysis of a gold-coated photonic crystal fiber based refractive index sensor

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In the course of past decade, surface plasmon resonance (SPR) based photonic crystal fiber (PCF) sensors have shown phenomenal advancement. Many researchers have proposed a wider range of SPR-based sensors by this time. But many of these proposed sensors either show low sensitivity or it is very difficult to fabricate the sensors for real time applications. We present a simple circular shaped PCF SPR sensor which is easy to fabricate as well as shows high sensitivity in the visible and near-infrared spectroscopy. A chemically stable and inactive plasmonic material, gold is applied to the outer layer of the PCF structure to generate surface plasmon excitation. A perfectly matched layer is used to minimize radiation absorption towards the surface. The guiding properties and analytical evaluation are carried out using commercially available COMSOL Multiphysics version 5.4 on the basis of finite element method. In x-polarization mode, the maximal value of amplitude sensitivity and wavelength sensitivity (WS) of the proposed sensor is 1757.3RIU−1 (Refractive Index Unit) and 32,000 nm/RIU respectively. In addition to that, the proposed design exhibits high sensor resolution of 1.428 × 10–6 and figure of merit of 587.2 indicating a high-performance sensor and demonstrates birefringence of 0.004 RIU. Moreover, the proposed PCF-SPR sensor is composed of only six symmetrical circular air holes, which makes it fabrication friendly. Owing to the high performance of the proposed sensor and high fabrication probability makes the sensor a strong contender to be used in biomedical and biochemical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahmmed, R., Ahmed, R., Razzak, S.M.A.: Design of large negative dispersion and modal analysis for hexagonal, square, FCC and BCC photonic crystal fibers. In: 2013 International Conference on Informatics, Electronics and Vision (ICIEV), Dhaka, pp. 1–6 (2013)

  • Akowuah, E.K., Gorman, T., Ademgil, H., Haxha, S., Robinson, G.K., Oliver, J.V.: Numerical analysis of a photonic crystal fiber for biosensing applications. IEEE J. Quantum Electron. 48(11), 1403–1410 (2012)

    Article  ADS  Google Scholar 

  • Al Mahfuz, M., Hasan, M.R., Momota, M.R., Masud, A., Akter, S.: Asymmetrical photonic crystal fiber based plasmonic sensor using the lower birefringence peak method. OSA Continuum 2, 1713–1725 (2019)

    Article  Google Scholar 

  • An, G., Hao, X., Li, S., Yan, X., Zhang, X.: D-shaped photonic crystal fiber refractive index sensor based on surface plasmon resonance. Appl. Opt. 56, 6988–6992 (2017)

    Article  ADS  Google Scholar 

  • Aoni, R.A., Ahmed, R., Abdur Razzak, S.M.: Design and simulation of duel-concentric-core photonic crystal fiber for dispersion compensation. In Rolland, J., Wyant, J., Chavel, P., Zhang, X., Wang, C., Bai, Y., (eds.), 2013 CIOMP-OSA Summer Session on Optical Engineering, Design and Manufacturing, Optical Society of America, paper Tu2 (2013)

  • Bender, W.J., Dessy, R.E.: Surface plasmon resonance sensor. Google Patents (1994)

  • Caucheteur, C., Guo, T., Albert, J.: Review of plasmonicfiber optic biochemical sensors: improving the limit of detection. Anal. Bioanal. Chem. 407, 3883–3897 (2015)

    Article  Google Scholar 

  • Chen, X., Xia, Li., Chen, Li.: Surface plasmon resonance sensor based on a novel d shaped photonic crystal fiber for low refractive index detection. IEEE Photon. J. 10(1), 1–9 (2018)

    Google Scholar 

  • Dash, J.N., Jha, R.: Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance. IEEE Photon. Technol. Lett. 26(11), 1092–1095 (2014)

    Article  ADS  Google Scholar 

  • EsfahaniMonfared, Y.: Refractive index sensor based on surface plasmon resonance excitation in a D-shaped photonic crystal fiber coated by titanium nitride. Plasmonics 15, 535–542 (2020)

    Article  Google Scholar 

  • Haider, F., Aoni, R.A., Ahmed, R., Miroshnichenko, A.E.: Highly amplitude-sensitive photonic-crystal-fiber-based plasmonic sensor. J. Opt. Soc. Am. B 35, 2816–2821 (2018)

    Article  ADS  Google Scholar 

  • Haider, F., Aoni, R.A., Ahmed, R., Islam, M.S., Miroshnichenko, A.E.: Propagation controlled photonic crystal fiber-based plasmonic sensor via scaled-down approach. IEEE Sens. J. 19(3), 962–969 (2019)

    Article  ADS  Google Scholar 

  • Hasan, M.R., Akter, S., Rifat, A.A., SRana, K Ahmed, R Ahmed, H Subbaraman, D Abbott, : Spiral photonic crystal fiber-based dual-polarized surface plasmon resonance biosensor. IEEE Sens. J. 18(1), 133–140 (2018)

    Article  ADS  Google Scholar 

  • Hu, D.J.J., Ho, H.P.: Recent advances in plasmonic photonic crystal fibers: design, fabrication and applications. Adv Opt. Photon. 9, 257–314 (2017)

    Article  Google Scholar 

  • Islam, M.S., Sultana, J., Dinovitser, A., Ahmed, K., Islam, M.R., Faisal, M., Ng, W.-H. , Abbott, D.: A novel zeonex based photonic sensor for alcohol detection in beverages. In: IEEE International Conference on Telecommunications and Photonics (ICTP), pp. 114–118 (2017)

  • Islam, M.S., Sultana, J., Rifat, A.A., Ahmed, R., Dinovitser, A., Ng, B.W.-H., Ebendorff-Heidepriem, H., Abbott, D.: Dual-polarized highly sensitive plasmonic sensor in the visible to near-IR spectrum. Opt. Express 26, 30347–30361 (2018)

    Article  ADS  Google Scholar 

  • Islam, M.S., Sultana, J., Ahmed, K., Islam, M.R., Dinovitser, A., Ng, B.W.H., Abbott, D.: Terahertz detection of alcohol using a photonic crystal fiber sensor. Appl. Opt. 57(10), 2426–33 (2018)

    Article  ADS  Google Scholar 

  • Islam, M.S., Sultana, J., Ahmed, K., Dinovitser, A., Islam, M.R., Ng, B.W.-H., Abbott, D.: A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime. IEEE Sens. J. 18(2), 575–582 (2018)

    Article  ADS  Google Scholar 

  • Islam, M.S., et al.: A Hi-Bi ultra-sensitive surface plasmon resonance fiber sensor. IEEE Access 7, 79085–79094 (2019)

    Article  Google Scholar 

  • Islam, M.R., Kabir, M.F., Talha, K.M.A., Islam, M.S.: A novel hollow core terahertz refractometric sensor. Sens. BioSens. Res. 25, 100295 (2019)

    Google Scholar 

  • Islam, M.S., Islam, M.R., Sultana, J., Dinovitser, A., Ng, B.W.H., Abbott, D.: Exposed core localized surface plasmon resonance biosensor. J. Opt. Soc. Am. B 36(8), 2306–2311 (2019)

    Article  ADS  Google Scholar 

  • Islam, M.R., Iftekher, A.N.M., Hasan, K.R., Nayen, M.J., Islam, S.B.: Dual-polarized highly sensitive surface-plasmon-resonance-based chemical and biomolecular sensor. Appl. Opt. 59, 3296–3305 (2020)

    Article  ADS  Google Scholar 

  • Islam, M.A., Islam, M.R., Islam Khan, M.M., Chowdhury, J.A., Mehjabin, F., Islam, M.: Highly birefringent slotted core photonic crystal fiber for THz wave propagation. Phys. Wave Phen. 28(1), 58–67 (2020)

    Article  ADS  Google Scholar 

  • James, S.W., Tatam, R.P.: Optical fibre long-period grating sensors: characteristics and application. Meas. Sci. Technol. 14, R49 (2003)

    Article  ADS  Google Scholar 

  • Kaur, V., Singh, S.: Design of titanium nitride coated PCF-SPR sensor for liquid sensing applications. Opt. Fiber Technol. 48, 159–164 (2019)

    Article  ADS  Google Scholar 

  • Klantsataya, E., François, A., Ebendorff-Heidepriem, H., Hoffmann, P., Monro, T.: Surface plasmon scattering in exposed core optical fiber for enhanced resolution refractive index sensing. Sensors 15(10), 25090–25102 (2015)

    Article  Google Scholar 

  • Knoll, W.: Interfaces and thin films as seen by bound electromagnetic waves. Annu. Rev. Phys. Chem. 49(1), 569–638 (1998)

    Article  ADS  Google Scholar 

  • Li, Z., Yu, Z., Shen, Y., Ruan, X., Dai, Y.: Graphene enhanced leaky mode resonance in tilted fiber Bragg grating: a new opportunity for highly sensitive fiber optic sensor. IEEE Access 7, 26641–26651 (2019)

    Article  Google Scholar 

  • Liu, C., et al.: Birefringent PCF-based SPR sensor for a broad range of low refractive index detection. IEEE Photon. Technol. Lett. 30(16), 1471–1474 (2018)

    Article  ADS  Google Scholar 

  • Liu, C., Su, W., Liu, Q., et al.: Symmetrical dual D-shape photonic crystal fibers for surface plasmon resonance sensing. Opt. Express 26(7), 9039–9049 (2018)

    Article  ADS  Google Scholar 

  • Lu, Y., Wang, M.T., Hao, C.J., Zhao, Z.Q., Yao, J.Q.: Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid. IEEE Photon. J. 6(3), 1–7 (2014)

    Google Scholar 

  • Luan, N., Wang, R., Lv, W., Yao, J.: Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core. Opt. Express 23, 8576–8582 (2015)

    Article  ADS  Google Scholar 

  • Mahdiraji, G.A., Chow, D.M., Sandoghchi, S.R., Amirkhan, F., Dermosesian, E., Yeo, K.S., Kakaei, Z., Ghomeishi, M., Poh, S.Y., Gang, S.Y., Adikan, F.R.M.: Challenges and solutions in fabrication of silica-based photonic crystal fibers: an experimental study. FiberIntegr. Opt. 33, 1–2 (2014)

    Google Scholar 

  • Mahfuz, M.A., Mollah, M.A., Momota, M.R., Paul, A.K., Masud, A., Akter, S., Hasan, M.R.: Highly sensitive photonic crystal fiber plasmonic biosensor: design and analysis. Opt. Mater. 90, 315–321 (2019)

    Article  ADS  Google Scholar 

  • Mahfuz, M.A., Hossain, M.A., Haque, E., Hai, N.H., Namihira, Y., Ahmed, F.: A bimetallic-coated, low propagation loss, photonic crystal fiber based plasmonic refractive index sensor. Sensors 19, 3794 (2019)

    Article  Google Scholar 

  • Meng, Q.-Q., Zhao, X., Lin, C.-Y., Chen, S.-J., Ding, Y.-C., Chen, Z.-Y.: Figure of merit enhancement of a surface plasmon resonance sensor using a low-refractive-index porous silica film. Sensors 17, 1846 (2017)

    Article  Google Scholar 

  • Min Liu, Xu., Yang, P.S., Yuan, H.: High-sensitivity birefringent and single-layer coating photonic crystal fiber biosensor based on surface plasmon resonance. Appl. Opt. 57, 1883–1886 (2018)

    Article  ADS  Google Scholar 

  • Monfared, Y.E., Hajati, M., Liang, C., Yang, S., Qasymeh, M.: Quasi-D-shaped fiber optic plasmonic biosensor for high-index analyte detection. IEEE Sens. J. 21(1), 17–23 (2021)

    Article  ADS  Google Scholar 

  • Mou, F.A., Rahman, M.M., Islam, M.R., Bhuiyan, M.I.H.: Development of a photonic crystal fiber for THz wave guidance and environmental pollutants detection. Sens. Bio-Sens. Res. 29, 100346 (2020)

    Article  Google Scholar 

  • Naik, G.V., Shalaev, V.M., Boltasseva, A.: Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 25(24), 3264–3294 (2013)

    Article  Google Scholar 

  • Nooke, A., Beck, U., Hertwig, A., Krause, A., Krüger, H., Lohse, V., Negendank, D., Steinbach, J.: On the application of gold based SPR sensors for the detection of hazardous gases. Sens. Actuat. B Chem. 149(1), 194–198 (2010)

    Article  Google Scholar 

  • Otupiri, R., Akowuah, E.K., Haxha, S., Ademgil, H., AbdelMalek, F., Aggoun, A.: A novel birefrigent photonic crystal fiber surface plasmon resonance biosensor. IEEE Photon. J. 6(4), 1–11 (2014)

    Article  Google Scholar 

  • Rahman, M.M., Mou, F.A., Bhuiyan, M.I.H., Islam, M.R.: Photonic crystal fiber based terahertz sensor for cholesterol detection in human blood and liquid foodstuffs. Sens. BioSens. Res. 29, 100356 (2020)

    Google Scholar 

  • Rifat, A.A., et al.: Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach. IEEE Photon. Technol. Lett. 27(15), 1628–1631 (2015)

    Article  ADS  Google Scholar 

  • Rifat, A.A., et al.: Copper-graphene-based photonic crystal fiberplasmonic biosensor. IEEE Photon. J. 8(1), 1–8 (2016)

    Article  Google Scholar 

  • Rifat, A.A., AmouzadMahdiraji, G., Shee, Y.G., JubayerShawon, M., MahamdAdikan, F.R.: A novel photonic crystal fiber biosensor using surface plasmon resonance. Procedia Eng. 140, 1–7 (2016)

    Article  Google Scholar 

  • Rifat, A.A., Rabiul Hasan, M., Ahmed, R., Miroshnichenko, A.E.: Microstructured optical fiber-based plasmonic sensors. In: Hameed, M., Obayya, S. (eds.) Computational Photonic Sensors. Springer, Cham (2019)

    Google Scholar 

  • Sazio, J.A., Amezcua-Correa, A., Finlayson, C.E., Hayes, J.R., Scheidemantel, T.J., Baril, N.F., Jackson, B.R., Won, D.J., Zhang, F., Margine, E.R., Gopalan, V., Crespi, V.H., Badding, J.V.: Microstructured optical fibers as high-pressure microfluidic reactors. Science 311(5767), 1583–1586 (2006)

    Article  ADS  Google Scholar 

  • Sharma, A.K., Jha, R., Gupta, B.D.: Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. IEEE Sens. J. 7(8), 1118–1129 (2007)

    Article  ADS  Google Scholar 

  • Vial, A., Grimault, A.-S., Macías, D., Barchiesi, D., de La Chapelle, M.L.: Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method. Phys. Rev. B 71, 085416 (2005)

    Article  ADS  Google Scholar 

  • Wang, A., Docherty, A., Kuhlmey, B.T., Cox, F.M., Large, M.C.J.: Side-hole fiber sensor based on surface plasmon resonance. Opt. Lett. 34, 3890–3892 (2009)

    Article  ADS  Google Scholar 

  • Wong, W.C., et al.: Photonic crystal fiber surface plasmon resonance biosensor based on protein G immobilization. IEEE J. Sel. Top. Quantum Electron. 19(3), 4602107–4602107 (2013)

    Article  ADS  Google Scholar 

  • Yang, X., Lu, Y., Liu, B., et al.: Analysis of graphene-based photonic crystal fiber sensor using birefringence and surface plasmon resonance. Plasmonics 12, 489–496 (2017)

    Article  Google Scholar 

  • Yu, X., Zhang, Y., Pan, S., Shum, P., Yan, M., Leviatan, Y., Li, C.: A selectively coated photonic crystal fiber-based surface plasmon resonance sensor. J. Opt. 12, 015005 (2009)

    Article  ADS  Google Scholar 

Download references

Funding

No funding is provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Rakibul Islam.

Ethics declarations

Conflict of interest

The authors declares no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M.R., Iftekher, A.N.M., Hasan, K.R. et al. Design and numerical analysis of a gold-coated photonic crystal fiber based refractive index sensor. Opt Quant Electron 53, 112 (2021). https://doi.org/10.1007/s11082-021-02748-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-02748-8

Keywords

Navigation