Skip to main content
Log in

A near infrared plasmonic perfect absorber as a sensor for hemoglobin concentration detection

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, we introduce a new metamaterial structure that perfectly absorbs the electromagnetic wave in a narrow frequency band in the near infrared frequency region. In addition to extensively illustrating the physical mechanism behind this perfect absorbing behavior, we completely investigate the applicability of the proposed structure as a sensitive refractive-index-based sensor, with the highest sensitivity calculated to be \(1400\,\hbox {nm}\)/RIU and the highest figure of merit to be 28.57. The sensor has the potential to be used for different useful applications. As an example, we elaborately and in detail, discuss the application of the sensor for hemoglobin concentration detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alipour, A., Mir, A., Farmani, A.: Ultra high-sensitivity and tunable dual-band perfect absorber as a plasmonic sensor. Opt. Laser Tchnol. 127, 106201 (2020)

    Google Scholar 

  • Askari, M., Zakery, A.: Effects of multi-layer stacking along the propagation direction of an infrared metamaterial on the electromagnetic response of the structure. Optik 127, 1408–1413 (2016)

    ADS  Google Scholar 

  • Askari, M., Niakan, N., Zakery, A.: A high transmission and low loss metamaterial with negative refraction at 458 thz. Optik 124, 2210–2213 (2013)

    ADS  Google Scholar 

  • Askari, M., Hosseini, M.V.: Infrared metamaterial refractive-index-based sensor. J. Opt. Soc. Am. B 37, 2712–2718 (2020a)

    ADS  Google Scholar 

  • Askari, M., Hosseini, M.V.: A novel metamaterial design for achieving a large group index via classical electromagnetically induced reflectance. Opt. Quant. Electron. 52, 191 (2020b)

    Google Scholar 

  • Askari, M., Zakery, A., Jahromi, A.S.: A low loss semi h-shaped negative refractive index metamaterial at 4.725 thz. Photonics Nanostructures: Fundam. Appl. 30, 78–83 (2018)

    ADS  Google Scholar 

  • Baqir, M.A., Farmani, A., Fatima, T., Raza, M.R., Shaukat, S.F., Mir, A.: Nanoscale, tunable, and highly sensitive biosensor utilizing hyperbolic metamaterials in the near-infrared range. Appl. Opt. 57(31), 9447–9454 (2018)

    ADS  Google Scholar 

  • Barnes, W.L.: Surface plasmon-polariton length scales: a route to sub-wavelength optics. J. Opt. A: Pure Appl. Opt. 8(4), 87–93 (2006)

    ADS  MathSciNet  Google Scholar 

  • Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)

    ADS  Google Scholar 

  • Butt, M.A., Khonina, S.N., Kazanskiy, N.L.: Highly sensitive refractive index sensor based on hybrid plasmonic waveguide microring resonator. Waves in Random and Complex Media (2018). https://doi.org/10.1080/17455030.2018.1506191

  • Butt, M.A., Khonina, S.N., Kazanskiy, N.L.: An array of nano-dots loaded mim square ring resonator with enhanced sensitivity at nir wavelength range. Optik 2020, 163655 (2020)

    ADS  Google Scholar 

  • Cui, Y., Fung, K.H., Xu, J., Ma, H., Jin, Y., He, S., Fang, N.X.: Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Lett. 12(3), 1443–1447 (2012)

    ADS  Google Scholar 

  • Diem, M., Koschny, T., Soukoulis, C.M.: Wide-angle perfect absorber/thermal emitter in the terahertz regime. Phys. Rev. B 79, 033101 (2009)

    ADS  Google Scholar 

  • Ditlbacher, H., Krenn, J.R., Felidj, N., Lamprecht, B., Schider, G., Salerno, M., Leitner, A., Aussenegg, F.R.: Fluorescence imaging of surface plasmon fields. Appl. Phys. Lett. 80(3), 404 (2002)

    ADS  Google Scholar 

  • Dolling, G., Enkrich, C., Wegener, M., Soukoulis, C.M., Linden, S.: Simultaneous negative phase and group velocity of light in a metamaterial. Science 312(5775), 892–894 (2006)

    ADS  Google Scholar 

  • Dragoman, M., Dragoman, D.: Plasmonics: Applications to nanoscale terahertz and optical devices. Prog. Quantum. Electron. 32(1), 1–41 (2008)

    ADS  Google Scholar 

  • Dragoman, M., Dragoman, D.: Nanoelectronics: Principles and Devices, 2nd edn. Artech House, Boston (2009)

    MATH  Google Scholar 

  • Enkrich, C., Wegener, M., Linden, S., Burger, S., Zschiedrich, L., Schmidt, F., Zhou, J.F., Koschny, T., Soukoulis, C.M.: Magnetic metamaterials at telecommunication and visible frequencies. Phys. Rev. Lett. 95, 203901 (2005)

    ADS  Google Scholar 

  • Ergin, T., Stenger, N., Brenner, P., Pendry, J.B., Wegener, M.: Three-dimensional invisibility cloak at optical wavelengths. Science 328, 337–339 (2010)

    ADS  Google Scholar 

  • Farmani, A.: Three-dimensional fdtd analysis of a nanostructured plasmonic sensor in the near-infrared range. J. Opt. Soc. Am. B 36(2), 401–407 (2019)

    ADS  Google Scholar 

  • Farmani, H., Farmani, A., Biglari, Z.: A label-free graphene-based nanosensor using surface plasmon resonance for biomaterials detection. Physica E Low Dimens. Syst. Nanostruct. 116, 113730 (2020)

    Google Scholar 

  • Feng, L., Huo, P., Liang, Y., Xu, T.: Photonic metamaterial absorbers: Morphology engineering and interdisciplinary applications. Adv. Mater. 1903787, (2019). https://doi.org/10.1002/adma.201903787

  • Gerislioglu, B., Dong, L., Ahmadivand, A., Hu, H., Peter, N., Halas, N.J.: Monolithic metal dimer-on-film structure: New plasmonic properties introduced by the underlying metal. Nano Lett 20(3), 2087–2093 (2020)

    ADS  Google Scholar 

  • Ghosh, S.K., Nath, S., Kundu, S., Esumi, K., Pal, T.: Solvent and ligand effects on the localized surface plasmon resonance (lspr) of gold colloids. J. Phys. Chem. B 108(37), 13963–13971 (2004)

    Google Scholar 

  • Guo, C.F., Sun, T., Cao, F., Liu, Q., Ren, Z.: Metallic nanostructures for light trapping in energy-harvesting devices. Light. Sci. Appl. 3, 161 (2014)

    Google Scholar 

  • Hecht, B., Bielefeldt, H., Novotny, L., Inouye, Y., Poh, D.W.: Local excitation, scattering, and interference of surface plasmons. Phys. Rev. Lett. 77(9), 1889 (1996)

    ADS  Google Scholar 

  • Huang, C., Ye, J., Wang, S., Stakenborg, T., Lagae, L.: Gold nanoring as a sensitive plasmonic biosensor for on-chip dna detection. Appl. Phys. Lett. 100, 173114 (2012)

    ADS  Google Scholar 

  • Hutter, E., Fendler, J.H.: Exploitation of localized surface plasmon resonance. Adv. Mater. 16(19), 1685–1706 (2004)

    Google Scholar 

  • Jahromi, A.S., Askari, M.: An extremely large group index via electromagnetically induced transparency in metamaterials. J. Eur. Optical Soc. - Rapid Publ. 9, 14048 (2014). https://doi.org/10.2971/jeos.2014.14048

    Article  Google Scholar 

  • Kazanskiy, N.L., Khonina, S.N., Butt, M.A.: Plasmonic sensors based on metal-insulator-metal waveguides for refractive index sensing applications: A brief review. Phys. E Low Dimens. Syst. Nanostruct. 117, 113798 (2020)

    Google Scholar 

  • Kiani, F., Sterl, F., Tsoulos, T.V., Weber, K., Giessen, H., Tagliabue, G.: Ultra-broadband and omnidirectional perfect absorber based on copper nanowire/carbon nanotube hierarchical structure. ACS Photonics 7(2), 366–374 (2020)

    Google Scholar 

  • Landy, N.I., Sajuyigbe, S., Mock, J.J., Smith, D.R., Padilla, W.J.: Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008)

    ADS  Google Scholar 

  • Lazareva, E.N., Tuchin, V.V.: Measurement of refractive index of hemoglobin in the visible/nir spectral range. J. Biomed. Opt. 23(3), 035004 (2018)

    ADS  Google Scholar 

  • Lee, H.-J., Lee, H.-S., Yoo, K.-H., Yook, J.-G.: Dna sensing using split-ring resonator alone at microwave regime. J Appl. Phys. 108, 014908 (2010)

    ADS  Google Scholar 

  • Liu, N., Mesch, M., Weiss, T., Hentschel, M., Giessen, H.: Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10(7), 2342–2348 (2010a)

    ADS  Google Scholar 

  • Liu, N., Weiss, T., Mesch, M., Langguth, L., Eigenthaler, U., Hirscher, M., Sönnichsen, C., Giessen, H.: Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett. 10, 1103–1107 (2010b)

    ADS  Google Scholar 

  • Liu, X., Tyler, T., Starr, T., Starr, A.F., Jokerst, N.M., Padilla, W.J.: Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys. Rev. Lett. 107, 045901 (2011)

    ADS  Google Scholar 

  • Lodewijks, K., Roy, W.V., Borghs, G., Lagae, L., Dorpe, P.V.: Boosting the figure-of-merit of lspr-based refractive index sensing by phase-sensitive measurements. Nano Lett. 12(3), 1655–1659 (2012)

    ADS  Google Scholar 

  • Moradiani, F., Farmani, A., Yavarian, M., Mir, A., Behzadfar, F.: A multimode graphene plasmonic perfect absorber at terahertz frequencies. Phys. E Low Dimens. Syst. Nanostruct. 122, 114159 (2020)

    Google Scholar 

  • Niakan, N., Askari, M., Zakery, A.: High q-factor and large group delay at microwave wavelengths via electromagnetically induced transparency in metamaterials. JOSA B 20, 2329–2333 (2012)

    ADS  Google Scholar 

  • Ordal, M.A., Long, L.L., Bell, S.E., Bell, R.R., Alexander, R.W., Ward, C.A.: Optical properties of the metals al, co, cu, au, fe, pb, ni, pd, pt, ag, ti, and w in the infrared and far infrared. Appl. Opt. 22(7), 1099–1120 (1983)

    ADS  Google Scholar 

  • Otto, A.: Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys. 216, 398–410 (1968)

    ADS  Google Scholar 

  • Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966 (2000)

    ADS  Google Scholar 

  • Pendry, J.B., Schurig, D., Smith, D.R.: Controlling electromagnetic fields. Science 312, 1780–1782 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  • Pryce, I.M., Kelaita, Y.A., Aydin, K., Atwater, H.A.: Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing. ACS Nano 5(10), 8167–8174 (2011)

    Google Scholar 

  • Rakhshani, M.R.: Fano resonances based on plasmonic square resonator with high figure of merits and its application in glucose concentrations sensing. Opt. Quant. Electron 51, 287 (2019)

    Google Scholar 

  • Rakhshani, M.R.: Optical refractive index sensor with two plasmonic double-square resonators for simultaneous sensing of human blood groups. Photonics Nanostructures: Fundam. Appl. 30, 100768 (2020)

    Google Scholar 

  • Rakhshani, M.R., Mansouri-Birjandi, M.A.: A high-sensitivity sensor based on three-dimensional metal-insulator-metal racetrack resonator and application for hemoglobin detection. Photonics Nanostructures: Fundam. Appl. 32, 28–34 (2018)

    ADS  Google Scholar 

  • Rashed, A.R., Gudulluoglu, B., Yun, H.W., Habib, M., Boyaci, I.H., Hong, S.H., Ozbay, H., Caglayan, E.: Highly-sensitive refractive index sensing by near-infrared metatronic nanocircuits. Sci. Rep. 8, 11457 (2018). https://doi.org/10.1038/s41598-018-29623-z

    Article  ADS  Google Scholar 

  • Ritchie, R.H., Arakawa, E.T., Cowan, J.J., Hamm, R.N.: Surface-plasmon resonance effect in grating diffraction. Phys. Rev. Lett. 21(22), 1530–1533 (1968)

    ADS  Google Scholar 

  • Sambles, J.R., Bradberg, G.W., Yang, F.Z.: Optical excitation of surface plasmons: and introduction. Contemp. Phys. 32(3), 173–183 (1991)

    ADS  Google Scholar 

  • Sherry, L.J., Jin, R., Mirkin, C.A., Schatz, G.C., Van Duyne, R.P.: Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. Nano Lett. 6(9), 2060–2065 (2006)

    ADS  Google Scholar 

  • Shih, W.-C., Santos, G.M., Zhao, F., Zenasni, O., Arnob, M.M.P.: imultaneous chemical and refractive index sensing in the 1–2.5 \(\mu \)m near-infrared wavelength range on nanoporous gold disks. Nano Lett. 16(7), 4641–4647 (2016)

    ADS  Google Scholar 

  • Singh, J. (ed.): Optical properties of condensed matter and applications. John Wiely Co., Chichester (2006)

  • Stewart, M.E., Anderton, C.R., Thompson, L.B., Maria, J., Gray, S.K., Rogers, J.A., Nuzzo, R.G.: Nanostructured plasmonic sensors. Chem. Rev. 108(2), 494–521 (2008)

    Google Scholar 

  • Tao, H., Bingham, C.M., Strikwerda, A.C., Pilon, D., Shrekenhamer, D., Landy, N.I., Fan, K., Zhang, X., Padilla, W.J., Averitt, R.D.: Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization. Phys. Rev. B 78, 241103 (2008)

    ADS  Google Scholar 

  • Tassin, P., Koschny, T., Kafesaki, M., Soukoulis, C.M.: A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics. Nat. Photon. 6, 259 (2012)

    ADS  Google Scholar 

  • Tsakmakidis, K.L., Boardman, A.D., Hess, O.: Trapped rainbow storage of light in metamaterials. Nature 450, 397–401 (2007). https://doi.org/10.1038/nature06285

    Article  ADS  Google Scholar 

  • Valentine, J., Zhang, S., Zentgraf, T., Ulin-Avila, E., Genov, D.A., Bartal, G., Zhang, X.: Three-dimensional optical metamaterial with a negative refractive index. Nature 455, 376–379 (2008). https://doi.org/10.1038/nature07247

    Article  ADS  Google Scholar 

  • Wang, B., Koschny, T., Soukoulis, C.M.: Wide-angle and polarization-independent chiral metamaterial absorber. Phys. Rev. B 80, 033108 (2009)

    ADS  Google Scholar 

  • Wu, C., Neuner, B., John, J., Milder, A., Zollars, B., Savoy, S., Shvets, G.: Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems. J. Opt. 14(2), 024005 (2012)

    ADS  Google Scholar 

  • Xu, Y., Wu, L., Ang, L.K.: Mos2-based highly sensitive near-infrared surface plasmon resonance refractive index sensor. IEEE J. Sel. Top. Quantum Electron. 25(2), 4600307 (2019)

    Google Scholar 

  • Zhang, S., Fan, W., Malloy, K.J., Brueck, S.R.J., Panoiu, N.C., Osgood, R.M.: Demonstration of metal-dielectric negative-index metamaterials with improved performance at optical frequencies. J. Opt. Soc. Am. B 23(3), 434–438 (2006)

    ADS  Google Scholar 

  • Zheludev, N.I.: The road ahead for metamaterials. Science 328(5978), 582–583 (2010)

    ADS  Google Scholar 

  • Zhou, J., Koschny, T., Soukoulis, C.M.: An efficient way to reduce losses of left-handed metamaterials. Opt. Express 16(15), 11147–11152 (2008)

    ADS  Google Scholar 

Download references

Funding

This paper is not funded and supported.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Mehdi Askari.

Ethics declarations

Conflicts of interest

I declare that there is no conflicts of interests pertaining to this paper.

Availability of data and material

The datasets analysed during the current study are available from the corresponding author on reasonable request.

Code availability

The software codes used during the current study are available from the corresponding author on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Askari, M. A near infrared plasmonic perfect absorber as a sensor for hemoglobin concentration detection. Opt Quant Electron 53, 67 (2021). https://doi.org/10.1007/s11082-020-02703-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02703-z

Keywords

Navigation