Skip to main content
Log in

Spin-wave generation using MZI embedded plasmonic antennas for quantum communications

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Spin wave generation formed by a soliton pulse within MZI embedded plasmonic antennas has been proposed. A soliton is the orthogonal (entangled) source that can be configured as the vertical and horizontal components in the same way as the polarization components. A dark soliton of wavelength 1.55 µm is selected and fed into the MZI input. The dark-bright soliton pulse entered into the upper and lower branches to form uplink and downlink antennas. The whispering gallery mode (WGM) can be generated by controlling the two side ring phase modulators. The gold grating surface is excited by the WGM input form the circuit, from which the electric dipoles oscillated. The trapped electrons by soliton pulses transmitted. The dipole oscillation of the antennas identified by plasma frequencies (Bragg wavelengths), which can form the spin-waves. The simulation programs are Optiwave and Matlab programs, from which the used parameters are selected from the realistic device parameters. The simulation results obtained show that the transmission bandwidth of 600 GHz with the antenna directivity of 7.78, and 4.63 for the uplink and downlink respectively and antenna gain (power) of 1.13 dB, and 1.07 dB for the uplink and downlink respectively. The transmission signals and power stability are confirmed by the transmission entanglement. The quantum sensor networks can also be applied, where the trend of the sensor sensitivity linearity is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Afroozeh, A.: Linear and nonlinear behaviour in single-ring resonator. J. Theor. Appl. Phys. 12, 71–78 (2018)

    Article  ADS  Google Scholar 

  • Arumona, A.E., Amiri, I.S., Yupapin, P.: Plasmonic micro-antenna characteristics using gold grating embedded in a panda- ring circuit. Plasmonics 15, 279–285 (2020)

    Article  Google Scholar 

  • Balanis, C.A.: Antenna Theory Analysis and Design, 3rd edn. Wiley, Hoboken (2005)

    Google Scholar 

  • Basirpour, M., Poursafar, J., Kolahdouz, M., Hajari, M., Forounzmehr, M., Neshat, M., Hajihoseini, H., Fathipour, M., Koalhdouz, Z., Zhang, G.: Terahertz radiation enhancement in dipole photoconductive antenna on LT-GaAsusing a gold plamonicnano disk array. Opt. Laser Technol. 120, 105726 (2019)

    Article  Google Scholar 

  • Bogaerts, W., Heyn, P.D., Vaerenbergh, T.V., Vos, K.D., Selvaraja, S.K., Claes, T., Dumon, P., Bienstman, P., Thourout, D.V., Baets, R.: Silicon micro-ring resonators. Laser Photon Rev. 6, 47–73 (2011)

    Article  ADS  Google Scholar 

  • Bozzola, A., Perotto, S., Angelis, F.D.: Hybrid plasmonic-photonic whispering gallery mode resonators for sensing: a critical review. R. Soc. Chem. Anal. 142, 883–898 (2017)

    Google Scholar 

  • Cea, M.D., Atabaki, A.H., Ram, R.J.: Power handling of silicon microring modulators. Opt. Express 27, 24274–24285 (2019)

    Article  ADS  Google Scholar 

  • Chaiwong, K., Bahanoran, M., Amiri, I.S., Youplao, P., Pornsuwancharoegn, N., Yupapin, P.: Electro–optic conversion circuit incorporating a fiber optic loop for light fidelity up-down link use. Microw. Opt. Technol. Lett. 61, 526–531 (2018)

    Article  Google Scholar 

  • Chernov, A.I., Kozhaev, M.A., Savochkin, I.V., Dodonov, D.V., Vetoshko, P.M., Zvezdin, A.K., Belotelov, V.I.: Optical excitation of spin waves in epitaxial iron garnet films: MSSW vs BVMSW. Opt. Lett. 42, 279–282 (2017)

    Article  ADS  Google Scholar 

  • Dattner, Y., Pecht, O.Y.: Analysis of the effective refractive index of silicon waveguides through the constructive and distructive interference in a Mach-Zehnder interferometer. IEEE Photonics J. 3, 1123–1132 (2011)

    Article  ADS  Google Scholar 

  • Glomglome, S., Srithanachai, I., Teeka, C., Mitatha, S., Niemcharoen, S., Yupapin, P.P.: Optical spin generated by a soliton pulse in an add-drop filter for optoelectronic and spintronic use. Opt. Laser Technol. 44, 1294–1297 (2012)

    Article  ADS  Google Scholar 

  • Guo, Z., Lu, L., Zhou, L., Shen, L., Chen, J.: 16 × 16 silicon optical switch based on dual ring assisted Mach–Zehnder interferometers. Lightwave Technol. 36, 225–232 (2018)

    Article  ADS  Google Scholar 

  • Hetet, G., Odelin, D.G.: Spin wave diffraction control and read-out with a quantum memory with light. New J. Phys. 17, 073003 (2015)

    Article  ADS  Google Scholar 

  • Hosseinbeig, A., Pirooj, A., Zarrabi, F.B.: A reconfigurable sub wavelength plasmonicfanonano antenna based on split ring resonator. J. Magn. Magn. Mater. 423, 203–207 (2017)

    Article  ADS  Google Scholar 

  • Meijerink, A., Roeloffzen, C.G.H., Meijerink, R., Zhuang, L., Marpaung, D.A.I., Bentum, M.J., Burla, M., Verpoorte, J., Jorna, P., HulZinga, A., Etten, W.V.: Noval ring resonator-based integrated photonic beamformer for broadband phased array receive antennas-part I: design and performance analysis. J. Lightwave Technol. 28, 3–18 (2010)

    Article  ADS  Google Scholar 

  • Mitatha, S., Pornsuwancharoen, N., Yupapin, P.P.: A simultaneous short-wave and millimeter-wave generation using a soliton pulse within a nano-waveguide. IEEE Photonics Technol. Lett. 21, 932–934 (2009)

    Article  ADS  Google Scholar 

  • Nagarajan, A., Erve, K.V., Gerini, G.: Ultra-narrowband polarization insensitive transmission filter using a coupled dielectric-metal metasurface. Opt. Express 28, 773–787 (2020)

    Article  ADS  Google Scholar 

  • Nordin, A.N.: Optical-resonator-based bio sensing systems: current status and future prospects. Nano bio sensors in Disease Diagnosis 5, 41–50 (2016)

    Article  Google Scholar 

  • Pornsuwancharoen, N., Amiri, I.S., Shuhailin, F.H., Aziz, M.S., Ali, J., Singh, G., Yupapin, P.: Micro current source generated by a WGM of light within a stacked silicon-graphene-Au waveguide. IEEE Photonics Lett. 29, 1768–1771 (2017)

    Article  ADS  Google Scholar 

  • Pthatharacorn, P., Chiangga, S., Yupapin, P.: Analytical and simulation results of a triple micro whispering gallery mode probe system for a 3D blood flow rate sensor. Appl. Opt. 55, 9504–9513 (2016)

    Article  ADS  Google Scholar 

  • Punthawanunt, S., Aziz, M.S., Phatharancorn, P., Chiangga, S., Ali, J., Yupapin, P.: Li-Fi cross-connection node model using whispering gallery mode of light in a microring resonator. Microsyst. Technol. 24, 4833–4838 (2018)

    Article  Google Scholar 

  • Sarapat, N., Pornsuwancharoegn, N., Youplao, P., Amiri, I.S., Jalil, M.A., Ali, J., Singh, G., Yupapin, P., Grattan, K.T.V.: LiFi up-downlink conversion node model generated by inline successive optical pumping. Microsyst. Technol. 25, 945–950 (2019)

    Article  Google Scholar 

  • Singh, P., Tripathi, D.K., Jaiswal, S., Dixit, H.K.: Design and analysis of all-optical AND, XOR and OR gates based on SOA-MZI configuration. Opt. Laser Technol. 66, 35–44 (2015)

    Article  ADS  Google Scholar 

  • Sripkadee, C., Sarapat, N.: Designing of universal WGM biosensor from micro ring resonator. Appl. Mech. Mater. 879, 173–177 (2018)

    Article  Google Scholar 

  • Ta, V.D., Chen, R., Ma, L., Ying, Y.J., Sun, H.D.: Whispering gallery mode microlasers and refractive index sensing based on single polymer fiber. Laser Photonics Rev. 7, 133–139 (2013)

    Article  ADS  Google Scholar 

  • Tunsiri, S., Thammawongsa, N., Threepak, T., Miatha, S., Yupapin, P.: Microring switching control using plasmonic ring resonator circuits for super- channel use. Plasmonics 14, 1669–1667 (2019)

    Article  Google Scholar 

  • Wang, S., Xu, Z., Wang, D., Wen, Y., Wang, M., Zhou, P., Yuan, L., Li, S., Wang, H.: Deterministic generation and partial retrieval of a spin-wave excitation in an atomic ensemble. Opt. Express 27, 27409–27419 (2019)

    Article  ADS  Google Scholar 

  • Wright, S.C., Wall, T.E., Tarbutt, M.R.: Microwave traps for atoms and molecules. Phys. Rev. Res. 1, 033035 (2019)

    Article  Google Scholar 

  • Yupapin, P.P.: Nonlinear coupling effects of waves in a panda ring. Science Discov. 1, 1–5 (2013)

    Article  Google Scholar 

  • Zhao, L., Li, H., Song, Y., Dong, M., Zhu, L.: Application of MZI symmetrical structure with fiber balls and seven-core fiber in micro displacement measurement. Photonic Sens. 9, 97–107 (2019)

    Article  ADS  Google Scholar 

  • Zheng, Y., Wu, Z., Shum, P.P., Xu, Z., Keiser, G., Humbert, G., Zhang, H., Zeng, S., Dinh, X.Q.: Sensing and lasing applications of whispering gallery mode microresonators. Opto-Electronic Adv. 9, 180015 (2018)

    Google Scholar 

Download references

Acknowledgements

One of the Authors, Anita Garhwal would like to thank Ton Duc Thang University, Vietnam for providing research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Yupapin.

Ethics declarations

Conflict of interest

The authors have declared that this work has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garhwal, A., Ray, K., Arumona, A.E. et al. Spin-wave generation using MZI embedded plasmonic antennas for quantum communications. Opt Quant Electron 52, 241 (2020). https://doi.org/10.1007/s11082-020-02368-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02368-8

Keywords

Navigation