Skip to main content
Log in

Generation of microwave and terahertz radiation in a medium of nanoparticles

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We investigate the mechanism of radiation generation, whose source are modulated with the variable \((x - \upsilon t)\) surface currents in elongated nanoparticles forming a 3D structure. Carbon nanotubes and graphene nanoribbons are considered as elongated nanoparticles. The volume fraction \(f < < 1\) of nanoparticles is considered small (the distance between the centers of nanoparticles is several times greater than their length), thus allowing one to neglect the interaction of two identical nanotubes due to the tunneling effect. Since the velocity of modulated surface currents \(\upsilon\) in 3D structure greater than the phase velocity of the light in a medium, then the process is qualitatively similar to the Cherenkov radiation by a system of dipoles that move with the velocity \(\upsilon\). In the case of \(\alpha\)-aligned nanofilms based on nanotubes, the radiation wavefront will have a form of a divergent wedge. It is shown that such a structure can generate intense microwave and terahertz radiation and an estimate of the radiation value is made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Batrakov, K.G., Maksimenko, S.A., Kuzhir, P.P., Thomsen, C.: Carbon nanotube as a Cherenkov-type light emitter and free electron laser. Phys. Rev. B 79, 125408 (2009)

    Article  ADS  Google Scholar 

  • Batrakov, K., Saroka, V., Maksimenko, S., Thomsen, C.: Plasmon polariton deceleration in graphene structures. J. Nanophotonics 6, 061719 (2012)

    Article  ADS  Google Scholar 

  • Batrakov, K., Maksimenko, S.: Graphene layered systems as a terahertz source with tuned frequency. Phys. Rev. B 95, 205408 (2017)

    Article  ADS  Google Scholar 

  • Belyantsev, A.M., Kozyrev, A.B.: Generation of RF oscillations in the interaction of an electromagnetic shock with a synchronous backward wave. Tech. Phys. 45(6), 747–752 (2000)

    Article  Google Scholar 

  • Bergman D.J., Stroud D.: Solid State Physics: Advances in Research and Applications. Academic Press, New York, vol. 46, p. 147 (1992)

    Google Scholar 

  • Bolotovskii, B.M.: Theory of Vavilov-Cherenkov effect. Sov. Phys. Usp. 62, 201–246 (1957)

    Article  Google Scholar 

  • Borondics, F., Kamarás, K., Nikolou, M., Tanner, D.B., Chen, Z.H., Rinzler, A.G.: Charge dynamics in transparent single-walled carbon nanotube films from optical transmission measurements. Phys. Rev. B 74, 045431 (2006)

    Article  ADS  Google Scholar 

  • Brasch, V., Geiselmann, M., Herr, T., Lihachev, G., Pfeiffer, M.H.P., Gorodetsky, M.L., Kippenberg, T.J.: Photonic chip–based optical frequency comb using soliton Cherenkov radiation. Science 351, 357–360 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  • Bruggerman, D.A.G.: Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen I Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann. Phys. (Leipzig) 24, 636 (1935)

    Article  ADS  Google Scholar 

  • Burke, P., Li, S., Yu, Z.: Quantitative theory of nanowire and nanotube antenna performance. IEEE Trans. Nanotechnol. 5(4), 314–334 (2006)

    Article  ADS  Google Scholar 

  • Deheer, W.A., et al.: Aligned carbon nanotube films: production and optical and electronic properties. Science 268, 845 (1995)

    Article  ADS  Google Scholar 

  • Dionne, J.A., Sweatlock, L.A., Atwater, H.A., Polman, A.: Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model Phys. Rev. B 72, 075405–075411 (2005)

    Article  Google Scholar 

  • Dremin, I.M.: Macroscopic QCD and quark-gluon plasma. Theor. Math. Phys. 170, 109–113 (2012)

    Article  MathSciNet  Google Scholar 

  • Faingold, M.I.: Cherenkov radiation of tachyons. Theor. Math. Phys. 47, 538–546 (1981)

    Article  Google Scholar 

  • Fernandes, D.E., Maslovski, S.I., Silveirinha, M.G.: Cherenkov emission in a nanowire material. Phys. Rev. B 85, 155107 (2012)

    Article  ADS  Google Scholar 

  • Frank, I.M.: Optics of light sources moving in refractive media. Sov. Phys. Usp. 68, 397–415 (1959). (In Russian)

    Article  Google Scholar 

  • Fujita, M., Wakabayashi, K., Nakada, K.: Kusakabe K, Peculiar Localized State at Zigzag Graphite Edge. J. Phys. Soc. Jpn. 65, 1920 (1996)

    Article  ADS  Google Scholar 

  • Garcia-Vidal, F.J., Pitarke, J.M., Pendry, J.B.: Effective Medium Theory of the Optical Properties of Aligned Carbon NanotubesPhys. Rev. Lett. 78, 4289 (1997)

    Article  ADS  Google Scholar 

  • Gilmour, Jr., A.S.: Principles of Traveling Wave Tubes. Artech, House, Norwood (1994)

    Google Scholar 

  • Ginzburg, N.S., Cross, A.W., Golovanov, A.A., Mesyats, G.A., Pedos, M.S., et al.: Generation of Electromagnetic Fields of Extremely High Intensity by Coherent Summation of Cherenkov Superradiance Pulses. Phys. Rev. Lett. 115, 114802 (2015)

    Article  ADS  Google Scholar 

  • Ginzburg, N.S., Novozhilova, NYu., Zotova, I.V., Sergeev, A.S., et al.: Generation of powerful subnanosecond microwave pulses by intense electron bunches moving in a periodic backward wave structure in the superradiative regime. Phys. Rev. E 60, 3297 (1999)

    Article  ADS  Google Scholar 

  • Ginzburg, V.L.: Certain theoretical aspects of radiation due to superluminal motion in a Medium. Sov. Phys. Usp. 2, 874–893 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  • Hebling, J., Almasi, G., Kozma, I.Z., Kuhl, J.: Velocity matching by pulse front tilting for large area THz-pulse generation. Opt. Express 10, 1161 (2002)

    Article  ADS  Google Scholar 

  • Hebling, J., Almasi, G.: Derivation of the pulse front tilt caused by angular dispersion. Opt. Quantum Electron. 28, 1759–1763 (1996)

    Article  Google Scholar 

  • Jelley, J.V.: Cerenkov Radiation and its Applications. Pergamon, London (1958)

    MATH  Google Scholar 

  • Jishi, R.A., Dresselhaus, M.S., Dresselhaus, G.: Electron-phonon coupling and the electrical conductivity of fullerene nanotubules. Phys. Rev. B 48(15), 11385 (1993)

    Article  ADS  Google Scholar 

  • Kanygin, M.A., Sedelnikova, O.V., Asanov, I.P., et al.: Effect of nitrogen doping on the electromagnetic properties of carbon nanotube-based composites. J. Appl. Phys. 113, 144315 (2013)

    Article  ADS  Google Scholar 

  • Khiznjak, N.A.: Integral Equations of Macroscopic Electrodynamics. Naukova Dumka, Kiev (1986). (in Russian)

    Google Scholar 

  • Klein, D.J.: Graphitic polymer strips with edge states. Chem. Phys. Lett. 217, 261 (1994)

    Article  ADS  Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: Course of Theoretical Physics, vol. 8. Electrodynamics of Continuous Media, Oxford (1960)

    Google Scholar 

  • Landauer R.: Electrical Transport and Optical Properties in Inhomogeneous Media. In: J.C. Garland, D.B. Tanner (eds.) AIP Conference Proceedings No. 40. Woodbury, New York, p. 2 (1978)

  • Lijuan, Z., Qi, P., Yuan, C., Ning, W., Weikun, G., Jiannong, W., Shihe, Y.: Vertically aligned zinc selenide nanoribbon arrays: microstructure and field emission. J. Phys. D Appl. Phys. 40, 3587–3591 (2007)

    Article  Google Scholar 

  • Lü, W., Dong, J., Li, Z.-Y.: Optical properties of aligned carbon nanotube systems by the effective-medium approximation method. Phys. Rev. B 63, 033401 (2000)

    Article  ADS  Google Scholar 

  • Markel, V.: Introduction to the Maxwell Garnett approximation: tutorial. J. Opt. Soc. Am. A 33(7), 1244–1256 (2016)

    Article  ADS  Google Scholar 

  • Marshall, T.C.: Free-Electron Lasers. Macmillan, New York (1985)

    Google Scholar 

  • Matitsine, S.M., Hock, K.M., Liu, L., Lagarkov, A.N., Rozanov, K.N.: Shift of resonance frequency of long conducting fibers embedded in a composite. J. Appl. Phys. 94(2), 1146 (2003)

    Article  ADS  Google Scholar 

  • Maxwell-Garnett, J.C.: Philos. Trans. R. Soc. Lond. Ser. A 203, 384 (1904)

    ADS  Google Scholar 

  • Mesyats, G.A., Yalandin, M.I., Reutova, A.G., Sharypov, K.A., Shpak, V.G., Shunailov, S.A.: Picosecond runaway electron beams in air. Fizika Plazmy 38(1), 34–51 (2012)

    Google Scholar 

  • Nakada, K., Fujita, M., Dresselhaus, G., Dresselhaus, M.S.: Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954 (1996)

    Article  ADS  Google Scholar 

  • Nemilentsau, A.M., Shuba, M.V., Slepyan, G.Y., Kuzhir, P.P., Maksimenko, S.A., Dyachkov, P.N., Lakhtakia, A.: Substitutional doping of carbon nanotubes to control their electromagnetic characteristics. Phys. Rev. B 82, 235424 (2010)

    Article  ADS  Google Scholar 

  • Novoselov, K., Geim, A., Morozov, S., Jiang, D., Zhang, Y., Dubonos, S., Grigorieva, I., Firsov, A.: Electric Field Effect in Atomically Thin Carbon Films. Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  • Sadykov, N.R.: Influence of powerful nanosecond electrical pulses on an array of double-walled nanotubes. Theor. Math. Phys. 177, 1423–1434 (2013)

    Article  MathSciNet  Google Scholar 

  • Sadykov, N.R., Skorkin, N.A.: Quantum approach to the description of amplification of radiation from an array of nanotubes. Tech. Phys. 58, 625 (2013)

    Article  Google Scholar 

  • Sadykov, N.R., Skorkin, N.A., Akhlyustina, E.A.: Effect of electromagnetic radiation on an array of weakly interacting carbon nanotubes in the presence of nanosecond pulses. Semiconductors 47, 1246 (2013). https://doi.org/10.1134/S1063782613090224

    Article  ADS  Google Scholar 

  • Sadykov, N.R.: Analogue of Vavilov-Cherenkov radiation in a medium based on an array of noninteracting nanotubes. Theor. Math. Phys. 184(2), 1163–1169 (2015)

    Article  MathSciNet  Google Scholar 

  • Sadykov, N.R., Belonenko, M.B., Peshkov, D.A.: Effect of electromagnetic radiation on an array of noninteracting carbon nanoribbons in the presence of nanosecond electrical pulses. Semiconductors 49, 663 (2015)

    Article  ADS  Google Scholar 

  • Sadykov, N.R., Peshkov, D.A., Dyachkov, P.N.: Combined effect of external periodic and constant electric fields on electron transport in carbon nanotubes and nanoribbons with metallic conductivity. J. Phys. Soc. Jpn. 86, 034712 (2017)

    Article  ADS  Google Scholar 

  • Sadykov, N.R., Aporoski, A.V.: Analogues of Vavilov-Cherenkov radiation in an array of noninteracting nanotubes. Theor. Math. Phys. 188, 1109 (2016)

    Article  MathSciNet  Google Scholar 

  • Saroka, V.A., Pushkarchuk, A.L., Kuten, S.A., Portnoi, M.E.: Hidden correlation between absorption peaks in achiral carbon nanotubes and nanoribbons. J. Saudi Chem. Soc. 22, 985–992 (2018)

    Article  Google Scholar 

  • Savinskii, S.S., Khokhryakov, N.V.: Characteristic features of the π-electron states of carbon nanotubes. J. Exp. Theor. Phys. 84, 1047 (1997)

    Article  Google Scholar 

  • Shuba, M.V., Slepyan, G.Y., Maksimenko, S.A., Thomson, C., Lakhtakia, A.: Theory of multiwall carbon nanotubes as waveguides and antennas in the infrared and the visible regimes. Phys. Rev. B 79, 15 (2009)

    Article  Google Scholar 

  • Shuba, M.V., Maksimenko, S.A., Lakhtakia, A.: Electromagnetic wave propagation in an almost circular bundle of closely packed metallic carbon nanotubes. Phys. Rev. B 76, 155407 (2007)

    Article  ADS  Google Scholar 

  • Slepyan, G.Y., Maksimenko, S.A., Lakhtakia, A., Yevtushenko, O., Gusakov, A.V.: Electrodynamics of carbon nanotubes: dynamic conductivity, impedance boundary conditions, and surface wave propagation. Phys. Rev. B 60, 17136 (1999)

    Article  ADS  Google Scholar 

  • Slepyan, G.Y., Shuba, M.V., Maksimenko, S.A., Thomsen, C., Lakhtakia, A.: Terahertz conductivity peak in composite materials containing carbon nanotubes: theory and interpretation of experiment. Phys. Rev. B 81, 205423 (2010)

    Article  ADS  Google Scholar 

  • Stepanov, A.G., Hebling, J., Kuhl, J.: Efficient generation of subpicosecond terahertz radiation by phasematched optical rectification using ultrashort laser pulses with tilted pulse fronts. Appl. Phys. Lett. 83, 3000 (2003)

    Article  ADS  Google Scholar 

  • Son, Y.-W., Cohen, M.L., Louie, S.G.: Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006)

    Article  ADS  Google Scholar 

  • Tamm, I.E., Frank, I.M.: Dokl. Akad. Nauk USSR 14, 107 (1937). (in Russian)

    Google Scholar 

  • Tans, S.J., Devoret, M.H., Dai, H., Thess, A., Smalley, R.E., Geerligs, L.J., Dekker, C.: Individual single-wall carbon nanotubes as quantum wires. Nature 386, 474 (1997)

    Article  ADS  Google Scholar 

  • Teo, K.B., Minoux, E., Hudanski, L., Peauger, F., Schnell, J.-P., Gangloff, L., Legagneux, P., Dieumegard, D., et al.: Microwave devices: carbon nanotubes as cold cathodes. Nature 437, 7061 (2005)

    Article  Google Scholar 

  • Tyukhtin, A.V., Vorobev, V.V.: Radiation of charges moving along the boundary of a wire metamaterial. Phys. Rev. E 89, 013202 (2014)

    Article  ADS  Google Scholar 

  • Tyukhtin, A.V., Vorobev, V.V., Galyamin, S.N.: Radiation of charged-particle bunches passing perpendicularly by the edge of a semi-infinite planar wire structure. Phys. Rev. E 91, 063202 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  • Vedernikov, A.I., Govorov, A.O., Chaplik, A.V.P.: Plasma oscillations in nanotubes and the Aharonov-Bohm effect for plasmons. J. Exp. Theor. Phys. 93(4), 853 (2001)

    Article  ADS  Google Scholar 

  • Vul, A., Reich, K., Eidelman, E., Terranova, M.L., Ciorba, A., Orlanducci, S., Sessa, V., Rossi, M.: A model of field emission from carbon nanotubes decorated by nanodiamonds. Adv. Sci. Lett. 3(2), 110–116 (2010)

    Article  Google Scholar 

  • Walsh, J.E., Marshall, T.C., Schlesinger, S.P.: Generation of coherent Cerenkov radiation with an intense relativistic electron beam. Phys. Fluids 20, 709 (1977)

    Article  ADS  Google Scholar 

  • Wang, B.-X., Zhai, X., Wang, G.-Z., Huang, W.-Q., Wang, L.-L.: A novel dual-band terahertz metamaterial absorber for a sensor application. J. Appl. Phys. 117, 014504 (2015)

    Article  ADS  Google Scholar 

  • White, CT., Li, J., Gunlycke, D., Mintmire, J.W.: Hidden One-electron interactions in carbon nanotubes revealed in graphene nanostrips. Nano Lett. 7(3), 825–830 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors of the paper would like to thank for the support from National Research Nuclear University MEPhI in the framework of the Russian Academic Excellence Project (Contract No. 02.a03.21.0005. 27.08.2013). The authors of the paper would like to thank M. V. Shuba for the discussion of results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. R. Sadykov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

In terms of electrodynamics, the discrete structure of massive amount of dispersive particles is equal to a continuous dielectric material, characterized by the effective dielectric function (magnetic properties of particles are neglected) (see Khiznjak 1986)

$$\hat{\varepsilon }_{\text{eff}} = \varepsilon_{2} \left[ {1 + \frac{4\pi }{\varOmega }\hat{g}\left( {1 + \frac{1}{\varOmega }\hat{\delta }\hat{g}} \right)^{ - 1} } \right],$$
(36)

hereinafter, the axis of nanotube is directed along the z axis, where \(\varOmega = \Delta x\Delta y\Delta z\), \(\Delta x,\,\Delta y,\Delta z\) are the distances between nanotube centers along the axes \(x\), \(y\) and \(z\), correspondently; the production of operators \(\hat{\delta }\hat{g}\) paper is equal to \(\hat{\delta }\hat{g} = \delta_{ii} g_{ii}\), where \(i = 1,2,3\), \(\delta_{11} = - 4\pi \delta_{xx} /3\), \(\delta_{22} = - 4\pi \delta_{yy} /3\), \(\delta_{33} = - 4\pi \delta_{zz} /3\); \(\delta_{xx} = 3B_{p}\), \(\delta_{yy} = 3B_{p}\), \(\delta_{zz} = 3B_{s}\), where \(B_{s}\) and \(B_{p}\) are the geometrical factors, such, that the polarization is aligned along (\(s\)—polarization) or perpendicular (\(p\)-polarization) to the nanotube’s axis).

In the case when the tensor of dielectric permittivity of ellipsoid is diagonal and main direction of this tensor coincide with the main axes of ellipsoid, the matrix \(g_{ik}\) is also diagonal and have form (see Khiznjak 1986)

$$g_{ii} = \frac{abc}{3}\frac{{\left( {\varepsilon_{ii} - \varepsilon_{2} } \right)}}{{\varepsilon_{2} + n_{i} \left( {\varepsilon_{ii} - \varepsilon_{2} } \right)}},\quad g_{ij} = 0,\quad i \ne j,\quad n_{i} = \frac{abc}{2}J_{i} ,$$
(37)

where \(J_{1} = J_{100} ,\quad J_{2} = J_{010} ,\quad J_{3} = J_{001}\), \(n_{i}\)—is the depolarization factor (Landau and Lifshitz 1960)

$$\begin{aligned} J_{i} & = \int_{0}^{\infty } {\frac{d\xi }{{\left( {\xi + \eta_{i}^{2} } \right)\sqrt {R(\xi )} }}} ,\quad R(\xi ) = (a^{2} + \xi )(b^{2} + \xi )(c^{2} + \xi ), \\ \eta_{1} & = a,\quad \eta_{2} = b,\quad \eta_{3} = c. \\ \end{aligned}$$
(38)

From (1) and (37) it follows that \(g_{ii}\) coincide with the polarizability \(\alpha_{i}\)

$$g_{ii} = \frac{abc}{3}\tilde{\alpha }_{i} = \frac{V}{4\pi }\tilde{\alpha }_{i} = \alpha_{i} .$$

From (36), taking into account (37) and (38), we obtain the expression for the effective dielectric function

$$\hat{\varepsilon }_{\text{eff}} = \varepsilon_{2} \left[ {1 + \frac{{f\tilde{\alpha }_{i} }}{{1 - fB_{i} \tilde{\alpha }_{i} }}} \right]\varepsilon_{\text{eff}} ,$$
(39)

where \(f = 4\pi abc/(3\varOmega )\) is the volume fraction. \(B_{s} = 1/3\)(\(\delta_{zz}\) = 1) in the case in the cubic lattice nanotube centers are located on the same distance (Khiznjak 1986).

To define the effective dielectric function, one should know the Newtonian potentials

$$\begin{aligned} J_{3} & = J_{001} = \int\limits_{0}^{\infty } {\frac{d\xi }{{\left( {c^{2} + \xi } \right)^{3/2} \left( {a^{2} + \xi } \right)^{1/2} \left( {b^{2} + \xi } \right)^{1/2} }}} \\ & = \frac{2}{{c^{3} }}\int\limits_{0}^{1} {\frac{{\varsigma^{2} d\varsigma }}{{\left[ {1 - \varsigma^{2} \left( {1 - \frac{{a^{2} }}{{c^{2} }}} \right)} \right]^{1/2} \left[ {1 - \varsigma^{2} \left( {1 - \frac{{b^{2} }}{{c^{2} }}} \right)} \right]^{1/2} }},} \\ \end{aligned}$$
(40)

where the new variable is introducted

$$\varsigma = c/\left( {c^{2} + \xi } \right)^{1/2} .$$
(41)

The integral (40) can be easily calculated if one splits him into two integrals \(I_{1}\) and \(I_{2}\) with integration domain \(0 \le \varsigma \le 1 - \alpha\) and \((1 - \alpha ) < \varsigma \le 1\), correspondently, where \(a/c\,\sim\,b/c < < \alpha < < 1\). This can easily be seen

$$\begin{aligned} I_{1} & = \int\limits_{0}^{1 - \alpha } {\frac{{\varsigma^{2} d\varsigma }}{{1 - \varsigma^{2} }}} \approx - 1 - \frac{1}{2}\ln \left( {\frac{\alpha }{2}} \right),\quad I_{2} = \int\limits_{1 - \alpha }^{1} {\frac{d\lambda }{{\left[ {\lambda^{2} + \frac{\lambda }{2}\left( {\frac{{a^{2} + b^{2} }}{{c^{2} }}} \right) + \frac{{a^{2} b^{2} }}{{4c^{4} }}} \right]}}} \\ & = \left. {\frac{1}{2}\ln \left| {\sqrt {\left( {\lambda + \frac{{a^{2} + b^{2} }}{{4c^{2} }}} \right)^{2} - \left( {\frac{{a^{2} - b^{2} }}{{4c^{2} }}} \right)} } \right|} \right|_{0}^{\alpha } = \frac{1}{2}\ln \left( {2\alpha } \right) - \ln \left( {\frac{a + b}{2c}} \right). \\ \end{aligned}$$
(42)

From (40) and (42) the expression for the Newtonian potential follows

$$J_{3} = J_{001} = \frac{2}{{c^{3} }}\left[ { - 1 + \ln \left( {\frac{4c}{a + b}} \right)} \right].$$
(43)

From Eqs. (37) and (38) it follows, that in the case of elongated ellipsoid \(c > > a > > b\), the depolarization factor is

$$n_{3} = \frac{abc}{2}J_{3} = \frac{ab}{{c^{2} }}\left[ { - 1 + \ln \left( {\frac{4c}{a + b}} \right)} \right] < < 1.$$
(44)

Depolarization factor \(n_{i}\) of axisymmetric ellipsoid \(c > > a = b\) decreases several times

$$\frac{b}{c}\left[ {\left( {1 + \frac{\ln 2}{{\left( { - 1 + \ln 2c/(a)} \right)}}} \right)} \right] \approx \frac{b}{c}.$$

Appendix 2

The dimensions of the wires considerably exceed the dimensions of the nanotubes, as a result of which the velocity of the surface waves in the wires is equal to the speed of light in a vacuum. Indeed, if the thickness of skin layer in the metallic wire is much smaller than its radius, then in this case at \(\omega < \omega_{p} /(1 + \varepsilon_{2} )\) there are nonradiative surface plasmon-polariton modes (SPP), and if \(\omega > \omega_{p}\) there are radiative surface plasmon-polariton modes (RPP) (Dionne et al. 2005), where \(\omega_{p} = 8.85 \times 10^{15} \text{s}^{ - 1}\)—is the bulk plasma frequency of the electron gas. In the case of SPP modes, the oscillation frequency can be in the terahertz range and in this case the phase velocity \(\upsilon_{p} \approx 2 \times 10^{8} \,{\text{m/s}}\) (Dionne et al. 2005), which is commensurate with the speed of light. In the case of RPP near the velocity modes, when the condition \(\omega \ge \omega_{p}\) is satisfied, the phase velocity of surface waves \(\upsilon_{p} \approx c\sqrt {\omega^{2} /\omega_{p}^{2} - 1} \to 0\). The condition \(\omega \ge \omega_{p}\) corresponds to the optical frequency range. In the case where the thickness of the skin layer in a metal wire is equal to or greater than its radius, then in this case there exist longitudinal and transverse plasmon modes. The transverse plasmon mode coincides with the dispersion of the asymmetric plasmon mode in a two-dimensional electron system of double thickness without a conducting screen, and the longitudinal plasmon mode coincides with the dispersion of the symmetric plasmon mode. In nanotubes, the velocity of surface waves is determined by the slowing factor \(\beta\), as a result of which the velocity of propagation of surface waves is much less than the speed of light in a vacuum. The magnitude of the slowing factor \(\beta \approx \left[ {4\alpha X\upsilon_{F} /(\pi c)} \right]^{1/2} \approx 0.02\) (Slepyan et al. 1999; Sadykov 2013), where the fine structure constant \(\alpha = 1/137\), \(\upsilon_{F}\)—is the electron velocity at the Fermi point of the nanotube (Sadykov 2013; Vedernikov et al. 2001), \(K_{0} (\xi ),\quad I_{0} (\xi ) - \pi\) are the modified Bessel functions.

Typical velocity of \(\pi\) electrons excited to energy of electron several volts is about 108 cm/s. For such electrons, the synchronism condition requires the slowing down of electromagnetic wave at least 300 times, which is much larger than the theoretical estimate (Slepyan et al. 1999), given for CNTs.). The presence of the small \(\beta\) value leads to the fact that the first plasmon resonance frequency for a 1-μm nanotube will correspond to radiation in a vacuum with a length of \(\sim0.1\,{\text{mm}} = 100\,\upmu{\text{m}}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadykov, N.R., Aporoski, A.V. Generation of microwave and terahertz radiation in a medium of nanoparticles. Opt Quant Electron 51, 96 (2019). https://doi.org/10.1007/s11082-019-1811-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-1811-2

Keywords

Navigation