Skip to main content
Log in

Characterization of graphene oxide/silicon dioxide/p-type silicon heterojunction photodetector towards infrared 974 nm illumination

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Graphene oxide (GO) based heterojunction photodetector was fabricated using a simple drop casting method which was further heated in a furnace at 450 °C. The physical characterization of the fabricated photodetector revealed non-homogeneous GO layer and presence of D and G band of graphene respectively at 1357 and 1596 cm−1. The photoresponsivity and external quantum efficiency of the photodetector were evaluated and optimized using infrared (IR) illumination at a wavelength of 974 nm. Current–voltage (IV) characteristics found to be sturdily dependent on the increased laser power as it showed threshold voltage (Vth) at 0.855 V. High photoresponsivity 9.577 mAW−1 was detected for laser power at 2.405 mW at direct-current (DC) bias 13.358 V. Rise and fall time found to be varying with frequency modulated laser and the applied DC bias voltage across the photodetector. High frequency modulation and low DC bias voltage showed profound rise and fall time at 48 and 2210 µs respectively. The photodetector was highly sensitive to 974 nm IR illumination for modulated laser frequency ranging from 1000 to 5000 Hz. Besides that, the fabricated heterojunction photodetector able to function in good condition at low DC bias voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmad, H., Thandavan, T.M.K.: The influence of aqueous sodium dodecyl sulphate solution in the photoresponsivity of nitrogen doped graphene oxide photodetector. Opt. Mater. 73, 441–448 (2017). https://doi.org/10.1016/j.optmat.2017.08.038

    Article  ADS  Google Scholar 

  • An, X., Liu, F., Jung, Y.J., Kar, S.: Tunable graphene–silicon heterojunctions for ultrasensitive photodetection. Nano Lett. 13(3), 909–916 (2013a)

    Article  ADS  Google Scholar 

  • An, Y., Behnam, A., Pop, E., Ural, A.: Metal-semiconductor-metal photodetectors based on graphene/p-type silicon Schottky junctions. Appl. Phys. Lett. 102(1) 013110 (2013b). https://doi.org/10.1063/1.4773992

    Article  ADS  Google Scholar 

  • Armin, A., Velusamy, M., Wolfer, P., Zhang, Y., Burn, P.L., Meredith, P., Pivrikas, A.: Quantum efficiency of organic solar cells: electro-optical cavity considerations. ACS Photonics 1(3), 173–181 (2014)

    Article  Google Scholar 

  • Baeg, K.J., Binda, M., Natali, D., Caironi, M., Noh, Y.Y.: Organic light detectors: photodiodes and phototransistors. Adv. Mater. 25(31), 4267–4295 (2013)

    Article  Google Scholar 

  • Bao, Q., Zhang, H., Wang, B., Ni, Z., Lim, C.H.Y.X., Wang, Y., Tang, D.Y., Loh, K.P.: Broadband graphene polarizer. Nat. Photonics 5(7), 411–415 (2011)

    Article  ADS  Google Scholar 

  • Bao, Q., Zhang, H., Wang, Y., Ni, Z., Yan, Y., Shen, Z.X., Loh, K.P., Tang, D.Y.: Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 19(19), 3077–3083 (2009)

    Article  Google Scholar 

  • Chang, C.-W., Hon, M.-H., Leu, C.: Preparation and optical properties of sonication-assisted nitrogen doped graphene oxide sheets. Opt. Quant. Electron. 48(2), 1–10 (2016)

    Google Scholar 

  • Chenebert, A., Breckon, T.P., Gaszczak, A.: A non-temporal texture driven approach to real-time fire detection. In: 2011 18th IEEE International Conference on Image Processing (ICIP), pp. 1741–1744. IEEE

  • Cheng, J., Zhang, Y., Guo, R.: ZnO microtube ultraviolet detectors. J. Cryst. Growth 310(1), 57–61 (2008)

    Article  ADS  Google Scholar 

  • Cui, P., Lee, J., Hwang, E., Lee, H.: One-pot reduction of graphene oxide at subzero temperatures. Chem. Commun. 47(45), 12370–12372 (2011)

    Article  Google Scholar 

  • Dhanabalan, S.C., Ponraj, J.S., Zhang, H., Bao, Q.: Present perspectives of broadband photodetectors based on nanobelts, nanoribbons, nanosheets and the emerging 2D materials. Nanoscale 8(12), 6410–6434 (2016)

    Article  ADS  Google Scholar 

  • Feng, W., Wu, J.-B., Li, X., Zheng, W., Zhou, X., Xiao, K., Cao, W., Yang, B., Idrobo, J.-C., Basile, L.: Ultrahigh photo-responsivity and detectivity in multilayer InSe nanosheets phototransistors with broadband response. J. Mater. Chem. C 3(27), 7022–7028 (2015)

    Article  Google Scholar 

  • Ganatra, R., Zhang, Q.: Few-layer MoS2: a promising layered semiconductor. ACS Nano 8(5), 4074–4099 (2014)

    Article  Google Scholar 

  • Goncalves, G., Marques, P.A., Granadeiro, C.M., Nogueira, H.I., Singh, M., Gracio, J.: Surface modification of graphene nanosheets with gold nanoparticles: the role of oxygen moieties at graphene surface on gold nucleation and growth. Chem. Mater. 21(20), 4796–4802 (2009)

    Article  Google Scholar 

  • Goykhman, I., Sassi, U., Desiatov, B., Mazurski, N., Milana, S., de Fazio, D., Eiden, A., Khurgin, J., Shappir, J., Levy, U.: On-chip integrated, silicon–graphene plasmonic Schottky photodetector with high responsivity and avalanche photogain. Nano Lett. 16(5), 3005–3013 (2016)

    Article  ADS  Google Scholar 

  • Hammadi, O.A., Khalaf, M.K., Kadhim, F.J.: Farbication of UV photodetector from nickel oxide nanoparticles deposited on silicon substrate by closed-field unbalanced dual magnetron sputtering techniques. Opt. Quant. Electron. 47(12), 1–9 (2015)

    Article  Google Scholar 

  • Haugan, H., Elhamri, S., Szmulowicz, F., Ullrich, B., Brown, G., Mitchel, W.: Study of residual background carriers in midinfrared In As/Ga Sb superlattices for uncooled detector operation. Appl. Phys. Lett. 92(7), 071102 (2008). https://doi.org/10.1063/1.2884264

    Article  ADS  Google Scholar 

  • Huang, H., Zhang, J., Jiang, L., Zang, Z.: Preparation of cubic Cu2O nanoparticles wrapped by reduced graphene oxide for the efficient removal of rhodamine B. J. Alloys Compd. 718, 112–115 (2017)

    Article  Google Scholar 

  • Hwang, D.W., Hong, B.H., Lee, D.S.: Multifunctional graphene oxide for bioimaging: emphasis on biological research. Eur. J. Nanomed. 9(2), 47–57 (2017)

    Article  ADS  Google Scholar 

  • Jayawardena, K.I., Rhodes, R., Gandhi, K.K., Prabhath, M.R., Dabera, G.D.M., Beliatis, M.J., Rozanski, L.J., Henley, S.J., Silva, S.R.P.: Solution processed reduced graphene oxide/metal oxide hybrid electron transport layers for highly efficient polymer solar cells. J. Mater. Chem. A 1(34), 9922–9927 (2013)

    Article  Google Scholar 

  • Justino, C.I., Gomes, A.R., Freitas, A.C., Duarte, A.C., Rocha-Santos, T.A.: Graphene based sensors and biosensors. TrAC Trends Anal. Chem. 91, 53–66 (2017)

  • Khorasaninejad, M., Walia, J., Saini, S.: Enhanced first-order Raman scattering from arrays of vertical silicon nanowires. Nanotechnology 23(27), 275706 (2012). https://doi.org/10.1088/0957-4484/23/27/275706

    Article  ADS  Google Scholar 

  • Kochmann, S., Hirsch, T., Wolfbeis, O.S.: Graphenes in chemical sensors and biosensors. TrAC Trends Anal. Chem. 39, 87–113 (2012)

    Article  Google Scholar 

  • Li, L., Yu, Y., Ye, G.J., Ge, Q., Ou, X., Wu, H., Feng, D., Chen, X.H., Zhang, Y.: Black phosphorus field-effect transistors. Nat. Nanotechnol. 9(5), 372–377 (2014)

    Article  ADS  Google Scholar 

  • Liu, Q., Deng, J., Xu, C., Xie, Y., Dong, Y., Pan, G., Sun, J.: High responsivity sensing of unfocused laser and white light using graphene photodetectors grown by chemical vapor deposition. Opt. Mater. Express 6(7), 2158–2164 (2016)

    Article  Google Scholar 

  • Miao, X., Tongay, S., Petterson, M.K. Berke, K., Rinzler, A.G., Appleton, B.R., Hebard, A.F.: High efficiency graphene solar cells by chemical doping. arXiv preprint arXiv:1209.0432 (2012)

  • Morita, M., Ohmi, T., Hasegawa, E., Teramoto, A.: Native oxide growth on silicon surface in ultrapure water and hydrogen peroxide. Jpn. J. Appl. Phys. 29(12A), L2392–L2394 (1990). https://doi.org/10.1063/1.347181

  • Muehlbrandt, S., Melikyan, A., Harter, T., Köhnle, K., Muslija, A., Vincze, P., Wolf, S., Jakobs, P., Fedoryshyn, Y., Freude, W.: Silicon-plasmonic internal-photoemission detector for 40 Gbit/s data reception. Optica 3(7), 741–747 (2016)

    Article  Google Scholar 

  • Obeng, Y., Srinivasan, P.: Graphene: is it the future for semiconductors? An overview of the material, devices, and applications. Electrochem. Soc. Interface 20(1), 47–52 (2011)

    Article  Google Scholar 

  • Piazza, Z.A., Hu, H.-S., Li, W.-L., Zhao, Y.-F., Li, J., Wang, L.-S.: Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nat. Commun. 5, 1–6 (2014)

    Article  Google Scholar 

  • Potnis, S.: From carbon to buckypaper. Resonance 20(2), 257–268 (2017)

    Article  Google Scholar 

  • Powell, J., O’Neil, J.P., Avila-Rodriguez, M.A., O’Neil, J.P, Barnhart, T.E., Dick, D.W., Koziorowski, J., Lapi, S., Lewis, J.S.: A simple low-cost photodiode radiation detector for monitoring in process PET radiochemistry. In: AIP Conference Proceedings 2012, vol. 1, pp. 249–253. AIP (2012)

  • Saxena, S., Tyson, T.A., Shukla, S., Negusse, E., Chen, H., Bai, J.: Investigation of structural and electronic properties of graphene oxide. Appl. Phys. Lett. 99(1), 013104 (2011). https://doi.org/10.1063/1.3607305

    Article  ADS  Google Scholar 

  • Scott, J.: UV resonant Raman scattering in ZnO. Phys. Rev. B 2(4), 1209 (1970)

    Article  ADS  Google Scholar 

  • Shen, J., Yan, B., Shi, M., Ma, H., Li, N., Ye, M.: One step hydrothermal synthesis of TiO 2-reduced graphene oxide sheets. J. Mater. Chem. 21(10), 3415–3421 (2011)

  • Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C.-Y., Galli, G., Wang, F.: Emerging photoluminescence in monolayer MoS2. Nano Lett. 10(4), 1271–1275 (2010)

    Article  ADS  Google Scholar 

  • Takahashi, L., Takahashi, K.: Low temperature pollutant trapping and dissociation over two-dimensional tin. Phys. Chem. Chem. Phys. 17(33), 21394–21396 (2015)

    Article  Google Scholar 

  • Tao, Y., Wu, X., Wang, W., Wang, J.: Flexible photodetector from ultraviolet to near infrared based on a SnS2 nanosheet microsphere film. J. Mater. Chem. C 3(6), 1347–1353 (2015)

    Article  Google Scholar 

  • Thandavan, T.M.K., San Wong, C., Gani, S.M.A., Nor, R.M.: [O][H] functionalization on carbon nanotube using (O2–H2) gas mixture DC glow discharge. Appl. Nanosci. 2(1), 47–53 (2012)

  • Tung, V.C., Allen, M.J., Yang, Y., Kaner, R.B.: High-throughput solution processing of large-scale graphene. Nat. Nanotechnol. 4(1), 25–29 (2009)

    Article  ADS  Google Scholar 

  • Velasco-Soto, M., Pérez-García, S., Alvarez-Quintana, J., Cao, Y., Nyborg, L., Licea-Jiménez, L.: Selective band gap manipulation of graphene oxide by its reduction with mild reagents. Carbon 93, 967–973 (2015)

    Article  Google Scholar 

  • Wei, D., Liu, Y., Wang, Y., Zhang, H., Huang, L., Yu, G.: Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9(5), 1752–1758 (2009)

    Article  ADS  Google Scholar 

  • Wei, J., Zang, Z., Zhang, Y., Wang, M., Du, J., Tang, X.: Enhanced performance of light-controlled conductive switching in hybrid cuprous oxide/reduced graphene oxide (Cu2O/rGO) nanocomposites. Opt. Lett. 42(5), 911–914 (2017)

    Article  ADS  Google Scholar 

  • Yang, G., Zhang, Y., Yan, X.: Electronic structure and optical properties of Graphene Monoxide. arXiv preprint arXiv:1209.0555 (2012)

  • Yu, X., Wang, Q.J.: Photodetector based on lateral graphene pn junction created by electron-beam irradiation. In: CLEO: Applications and Technology 2015, p. JTu5A-47. Optical Society of America, Washington, DC

  • Zang, Z., Zeng, X., Wang, M., Hu, W., Liu, C., Tang, X.: Tunable photoluminescence of water-soluble AgInZnS–graphene oxide (GO) nanocomposites and their application in vivo bioimaging. Sens. Actuators B Chem. 252, 1179–1186 (2017)

    Article  Google Scholar 

  • Zhai, T., Fang, X., Liao, M., Xu, X., Li, L., Liu, B., Koide, Y., Ma, Y., Yao, J., Bando, Y.: Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors. ACS Nano 4(3), 1596–1602 (2010)

    Article  Google Scholar 

  • Zhang, H., Tang, D., Zhao, L., Bao, Q., Loh, K.: Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene. Opt. Express 17(20), 17630–17635 (2009)

    Article  ADS  Google Scholar 

  • Zheng, Z., Zhao, C., Lu, S., Chen, Y., Li, Y., Zhang, H., Wen, S.: Microwave and optical saturable absorption in graphene. Opt. Express 20(21), 23201–23214 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Funding for this work was provided for by the Ministry of Higher Education, Malaysia under the Grants LRGS (2015) NGOD/UM/KPT and GA 010 – 2014 (ULUNG) as well as the University of Malaya under the Grants RU 001-2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, H., Thandavan, T.M.K. Characterization of graphene oxide/silicon dioxide/p-type silicon heterojunction photodetector towards infrared 974 nm illumination. Opt Quant Electron 49, 395 (2017). https://doi.org/10.1007/s11082-017-1218-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-1218-x

Keywords

Navigation