Skip to main content
Log in

Study of a nano optical antenna for intersatellite communications

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Nowadays, communications are moving to the optical frequencies, due to the extended bandwidth available, and the saturation of the RF spectrum. The dimensions of the antennas decrease with the operating wavelength. Therefore, in the optical domain, building an antenna may imply the design of a device with dimensions of several nanometers. The development of nanotechnology has enabled the development of these new devices, known as nanoantennas or optical antennas. New phenomenology has appeared with these new devices. In 2006 it was discovered that the transmission of light through arrays of subwavelength holes in a metal, gives rise to the phenomenon of extraordinary optical transmission, or in other words the amount of optical energy appearing on the other side of the metal is much greater than was expected by theoretical studies. The applications of these new antennas are fascinating, and are present in a very broad range of areas from biophotonics to quantum communication, data processing or optical wireless communications. This paper aims at studying and characterizing, in a classical perspective, an optical antenna formed by an array of subwavelength holes in a metal sheet that could be integrated in the transmitter or receiver ends of an intersatellite optical communication system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424, 824–830 (2003). doi:10.1038/nature01937

    Article  ADS  Google Scholar 

  • Bethe, H.A.: Theory of diffraction by small holes. Phys. Rev. 66, 163–182 (1944). doi:10.1103/PhysRev.66.163

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Biagioni, P., Huang, J.-S., Hecht, B.: Nanoantennas for visible and infrared radiation. Rep. Prog. Phys. 75(2), 1–40 (2012). doi:10.1088/0034-4885/75/2/024402

    Article  Google Scholar 

  • Bouwkamp, C.J.: On Bethe’s theory of diffraction by small holes. Philips Res. Rep. 5, 321–332 (1950)

    MathSciNet  Google Scholar 

  • Bouwkamp, C.J.: Diffraction theory. Rep. Prog. Phys. 17(1), 35–100 (1954). doi:10.1088/0034-4885/17/1/302

  • Faria, J.A.B.: Óptica—Fundamentos e Aplicações. Editorial Presença, Lisboa (1995)

    Google Scholar 

  • Garcia-Vidal, F.J., Martin-Moreno, L., Ebbesen, T.W., Kuipers, L.: Light passing through subwavelength apertures. Rev. Mod. Phys. 82, 729–787 (2010). doi:10.1103/RevModPhys.82.729

    Article  ADS  Google Scholar 

  • Hecht, E.: Óptica, 3 ed., Av. de Berna, Lisboa: Fundação Calouste Gulbenkian, pp. 495–578 (2012)

  • Krasnok, A., Belov, P., Miroshnichenko, A., Kuznetsov, A., Luk’yanchuk, B., Kivshar, Y.: All-dielectric optical nanoantennas. Physics – Optics. 1–33 (2014)  

  • Kumar, A.: Optical Nano-Antennas: Fabrication, Characterization and Applications, Illinois (2011)

  • Logotheditis, S.: Nanotechnology: Principles and Applications. In: NanoScience and Technology, pp. 1–22. Springer (2012). doi:10.1007/978-3-642-22227-6_1

  • Marino, A.M., Piredda, G.: Diffraction by Small Circular Aperture, 1–6 (2016)

  • Martins, M.A., Trindade, T.: Os nanomateriais e a descoberta de novos mundos na bancada do químico. Química Nova. 35(7), 1434–1446 (2012)

  • Martins, R.: Nanotecnologia - Breve contetualização sobre as Aplicações e Implicações, Revista Militar (2539/2540), pp. 675–699 (2013)

  • Novotny, L.: From near-field optics to optical antennas. Physics Today. 64(7), 47–51 (2011). doi:10.1063/PT.3.1167

  • Novotny, L., Hecht, B.: Principles of Nano-Optics. Cambridge University Press. (2006). doi:10.1017/CBO9780511813535

  • Olkkonen, J.: Finite difference time domain studies on sub-wavelength aperture structures. VTT Publications 745, 32–40 (2010)

    Google Scholar 

  • Pitarke, J.M., Silkin, V.M., Chulkov, E.V. Echenique, P.M.: Theory of surface plasmons and surface-plasmon polaritons. Reports on Progress in Physics 70(1), 1–87 (2007). doi:10.1088/0034-4885/70/1/R01

  • Ribeiro, T.T.: As Operações Militares na era da Informação e da Comunicação. Proelium-Revista da Academia Militar (2003)

  • Skigin, D., Lester, M.: Commentary: Optical nanoantennas: from communications to super-resolution. J. Nanophoton 5(1), 050303 (2011). doi:10.1117/1.3595688

  • Treacy, M.M.J.: Dynamical diffraction in metallic optical gratings. Appl. Phys. Lett. 75, 606–608 (1999). doi:10.1063/1.124455

    Article  ADS  Google Scholar 

  • Van Hulst, N., Novotny, L.: Antennas for light. Nature Photonics. 5, 83–90 (2011). doi:10.1038/nphoton.2010.237

    Google Scholar 

  • Vial, A., Grimault, A., Macías, D., Barchiesi, D., Chapelle, M.L.: Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method. Phys. Rev. B., American Physical Society 71(1), 085416 (2005). doi:10.1103/PhysRevB.71.085416

  • Weiner, J.: The physics of light transmission through subwavelenght apertures and aperture arrays. Reports on Progress in Physics 72(6), 064401 (2009). doi:10.1088/0034-4885/72/6/064401

  • Wenger, J.: Aperture optical antennas, pp. 1–24. Cambridge University Press (2014)

  • Wissert, M.D., Schell, A.W., Ilin, K.S., Siegel, M., Eisler, H.-J.: Nanoengineering and characterization of gold nanoantennas with enhanced integrated scattering properties. Nanotechnology 20(42), 425203 (2009). doi:10.1088/0957-4484/20/42/425203

Download references

Acknowledgments

This work was supported by national founds through the Fundação para a Ciência e a Tecnologia (FCT) of the Portuguese Government with reference UID/EEA/50008/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Paulo N. Torres.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, R.D.F.R., Martins, M.J., Baptista, A. et al. Study of a nano optical antenna for intersatellite communications. Opt Quant Electron 49, 135 (2017). https://doi.org/10.1007/s11082-017-0966-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-0966-y

Keywords

Navigation