Skip to main content
Log in

Laboratory setup for fiber Bragg gratings inscription based on Talbot interferometer

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

An experimental setup for the fiber Bragg gratings (FBGs) inscription by use of Talbot interferometer has been described in this paper. A KrF excimer laser system Master Oscillator–Power Amplifier CL-7550 (Optosystems Ltd, Russia) was used as the UV radiation source in the experimental setup. In order to control laser beam quality, thus to provide FBGs effective writing, the laboratory setup includes: spectral width control system, based on Fabry–Perot interferometer; laser beam energy distribution control system; monitoring system of laser pulse energy density on the optical fiber; and control system of optical fiber to the laser beam relative position. FBGs of type I inscription results in a single-pulse and multi-pulse modes are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arkhipov, S.V., Grehn, M., Varzhel, S.V., Strigalev, V.E., Griga, N., Eichler, H.J.: Point-by-point inscription of fiber Bragg gratings into birefringent optical fiber through protective acrylate coating by Ti:Sa femtosecond laser. Sci. Tech. J. Inf. Technol. Mech. Opt. 15(3), 373–377 (2015)

    Google Scholar 

  • Askins, C.G., Tsaim, T.-E., Williams, G.M., Puttnam, M.A., Bashkansky, Y.M., Friebel, E.J.: Fibre Bragg reflectors prepared by a single excimer pulse. Opt. Lett. 17(11), 833–835 (1992)

    Article  ADS  Google Scholar 

  • Atezhev, V.V., Vartapetov, S.K., Zhukov, A.N., Kurzanov, M.A., Obidin, A.Z.: Excimer laser with highly coherent radiation. Quatum Electron. 33(8), 689–694 (2003)

    Article  ADS  Google Scholar 

  • Bartelt, H., Schuster, K., Unger, S., Chojetzki, C., Rothhardt, M., Latka, I.: Single-pulse fiber Bragg gratings and specific coatings for use at elevated temperatures. Appl. Opt. 46(17), 3417–3424 (2007)

    Article  ADS  Google Scholar 

  • Bureev, S.V., Dukel’skiĭ, K.V., Eron’yan, M.A., Komarov, A.V., Levit, L.G., Khokhlov, A.V., Zlobin, P.A., Strakhov, V.I.: Processing large blanks of anisotropic single-mode lightguides with elliptical cladding. J. Opt. Technol. 74(4), 297–298 (2007)

    Article  Google Scholar 

  • Fortin, V., Maes, F., Bernier, M., Bah, S.T., D’auteuil, M., Vallée, R.: Watt-level erbium-doped all-fiber laser at 3.44 μm. Opt. Lett. 41(3), 559–562 (2016)

    Article  ADS  Google Scholar 

  • Hill, K.O., Malo, B., Bilodeau, F., Johnson, D.C., Albert, J.: Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask. Appl. Phys. Lett. 62(10), 1035–1037 (1993)

    Article  ADS  Google Scholar 

  • Huang, Y., Jivraj, J., Zhou, J., Ramjist, J., Wong, R., Gu, X., Yang, V.X.: Pulsed and CW adjustable 1942 nm singlemode all-fiber Tm-doped fiber laser system for surgical laser soft tissue ablation applications. Opt. Express 24(15), 16674–16686 (2016)

    Article  ADS  Google Scholar 

  • Koo, K.P., Tveten, A.B., Vohra, S.T.: Dense wavelength division multiplexing of fibre Bragg grating sensors using CDMA. Electron. Lett. 35(2), 165–167 (1999)

    Article  Google Scholar 

  • Köppe, E., Bartholmai, M., Daum, W., Gong, X., Holmann, D., Basedau, F., Schukar, V., Westphal, A., Sahre, M., Beck, U.: New self-diagnostic fiber optical sensor technique for structural health monitoring. Mater. Today Proc. 3, 1009–1013 (2016)

    Article  Google Scholar 

  • Lawson, N.J., Correia, R., James, S.W., Partridge, M., Staines, S.E., Gautrey, J.E., Garry, K.P., Holt, J.C., Tatam, R.P.: Development and application of optical fibre strain and pressure sensors for in-flight measurements. Meas. Sci. Technol. 27(104001), 1–17 (2016)

    Google Scholar 

  • Liaw, S.-K., Tsai, P.-S., Wang, H., Minh, H.L., Ghassemlooy, Z.: FBG-based reconfigurable bidirectional OXC for 8x10 Gb/s DWDM transmission. Optics Communications 358, 154–159 (2016)

    Article  ADS  Google Scholar 

  • Martinez, A., Dubov, M., Khrushchev, I., Bennion, I.: Direct writing of fibre Bragg gratings by femtosecond laser. Electron. Lett. 40, 1170–1172 (2004)

    Article  Google Scholar 

  • Mayer, E.E., Gillett, D.A., Govorkov, S.: Fiber Bragg grating writing by interferometric or phase-mask methods using high-power excimer lasers. Fiber Integr. Opt. 18, 189–198 (1999)

    Article  Google Scholar 

  • Meltz, G., Morey, W.W., Glenn, W.H.: Formation of Bragg gratings in optical fibers by a transverse holographic method. Opt. Lett. 14(15), 823–825 (1989)

    Article  ADS  Google Scholar 

  • Rao, Y.J.: Recent progress in applications of in-fibre Bragg grating sensors. Opt. Lasers Eng. 31, 297–324 (1999)

    Article  Google Scholar 

  • Rothhardt, M., Chojetzki, C., Mueller, H.R.: High mechanical strength single-pulse draw tower gratings. Proc. SPIE 5579, 127–135 (2004)

    Article  ADS  Google Scholar 

  • Shanker, R., Srivastava, P., Bhattacharya, M.: Performance analysis of 16-Channel 80-Gbps optical fiber communication system. In: International Conference on Computational Techniques in Information and Communication Technologies (ICCTICT) (2016)

  • Varzhel’, S.V., Kulikov, A.V., Meshkovskii, I.K., Strigalev, V.E.: Recording Bragg gratings in a birefringent optical fiber with a single 20-ns pulse of an excimer laser. J. Opt. Technol. 79(4), 257–259 (2012)

    Article  Google Scholar 

  • Varzhel’, S.V., Munko, A.S., Konnov, K.A., Gribaev, A.I., Kulikov, A.V.: Fiber Bragg gratings writing in hydrogenated birefringent optical fiber with an elliptical stress cladding. Opt. Zh. 83(10), 74–78 (2016)

    Google Scholar 

  • Wada, A., Tanaka, S., Takahashi, N.: Optical fiber vibration sensor using FBG Fabry–Perot interferometer with wavelength scanning and Fourier analysis. IEEE Sens. J. 12(1), 225–229 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been done at the ITMO University and supported by the Ministry of Education and Science of the Russian Federation (Unique identifier of the Project: RFMEFI57815X0109, Contract No. 14.578.21.0109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey I. Gribaev.

Additional information

This article is part of the Topical Collection on Fundamentals of Laser Assisted Micro- & Nanotechnologies.

Guest edited by Eugene Avrutin, Vadim Veiko, Tigran Vartanyan and Andrey Belikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gribaev, A.I., Pavlishin, I.V., Stam, A.M. et al. Laboratory setup for fiber Bragg gratings inscription based on Talbot interferometer. Opt Quant Electron 48, 540 (2016). https://doi.org/10.1007/s11082-016-0816-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0816-3

Keywords

Navigation