Skip to main content
Log in

Performance analysis of phase modulated RoF based two and three tone transmission against intermodulation distortion over a dispersive link

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Analytical model for distribution of multi-tone radio frequencies signal is developed in the present paper. Based on the analytical model, signal to noise distortion ratio (SNDR) has been investigated for different modulation indices at dispersion of 400 and 800 ps2 including the effects of intermodulation distortion and noise. It is found that SNDR decreases by 17 dB as dispersion increases from 400 to 800 ps2. The modulation index should be kept small to minimise the unwanted modulation nonlinearities. Further system dynamic range has also been investigated at the considered dispersion values. On comparison, it has been found that dynamic range reduces by 7.754 dB in 1-Hz bandwidth for a three tone transmission system compared to a two tone transmission system. Simulation is also carried out for studying output spectrum of signals using Optsim and verifies the results of analytical analysis. There is trade-off between the output power and system dynamic range which should be considered in the system design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Chi, H., Yao, J.P.: Power distribution of phase modulated microwave signals in a dispersive fiber optic link. IEEE Photonics Technol. Lett. 20(4), 315–317 (2008)

    Article  ADS  Google Scholar 

  • Chi, H., Zou, X., Yao, J.: Analytical models for phase-modulation-based microwave photonic systems with phase modulation to intensity modulation conversion using a dispersive device. J. Lightwave Technol. 27(5), 511–521 (2009)

    Article  ADS  Google Scholar 

  • Gao, Y., Wen, A., Liu, L., Tian, S., Xiang, S., Wang, Y.: Compensation of the dispersion-induced power fading in an analog photonic link based on PM–IM conversion in a sagnac loop. J. Lightwave Technol. 33(13), 2899–2904 (2015)

    Article  ADS  Google Scholar 

  • Herschel, R., Schaffer, C.G.: Phase modulated radio-over-fiber system for high order modulation millimeter wave link. J. Lightwave Technol. 32(20), 3602–3608 (2014)

    Article  ADS  Google Scholar 

  • Kanno, A., Kuri, T., Hosako, I., Kawanishi, T., Yasumura, Y., Yoshida, Y., Kitayama, K.: 100-GHz and 300-GHz coherent radio-over-fiber transmission using optical frequency comb source. In: Proceedings of the SPIE, vol. 8645, pp. 1–7 (2013)

  • Marti, J., Ramo, F., Polo, V., Fuster, M., Corral, J.L.: Millimeter wave signal generation and harmonic upconversion through PM-IM conversion in chirped fiber gratings. Fiber Integr. Opt. 19(2), 187–198 (2000)

    Article  ADS  Google Scholar 

  • Qi, G., Yao, J., Seregelyi, J., Paquet, S., Belisle, C.: Generation and distribution of a wide band continuously tunable millimeter wave signal with an optical external modulation technique. IEEE Trans. Microw. Theory Tech. 53(10), 3090–3097 (2005)

    Article  ADS  Google Scholar 

  • Singlaand, S., Arya, S.K.: Simulative investigation for third order-IM terms in multi-tone RoF system. Optik 125, 3756–3758 (2014)

    Article  ADS  Google Scholar 

  • Wells, J.: Faster than fiber: the future of multi-Gb/s wireless. IEEE Microw. Mag. 10(3), 104–112 (2009)

    Article  Google Scholar 

  • Zeng, F., Yao, J.P.: Investigation of phase modulator based all optical bandpass microwave filter. J. Lightwave Technol. 23(4), 1721–1728 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parvin Kumar.

Appendix

Appendix

Beating takes place in photodetector between optical components. Different orders of electrical harmonic components are generated due to beating. We find the kth harmonic component, \({ \exp }\left({jk\omega_{m} t} \right),\) with an angular frequency \((k_{1} \omega_{1} + k_{2} \omega_{2} + k_{3} \omega_{3})\) can be expressed as:

$$\begin{aligned} i_{{k_{1},k_{2},k_{3}}} \left(t \right) & = \rho \mathop \sum \limits_{p = - \infty}^{\infty} \mathop \sum \limits_{q = - \infty}^{\infty} \mathop \sum \limits_{r = - \infty}^{\infty} \left\{j^{{p + q + r + k_{1} + k_{2} + k_{3}}} J_{{p + k_{1}}} J_{{q + k_{2}}} J_{{r + k_{3}}} \exp \left[{{\text{j}}\left({q + k_{2}} \right){\upvarphi}} \right] \right. \\ & \quad \left. \times \exp \left[{{\text{j}}\left(2 \right)\left({r + k_{3}} \right){\upvarphi}} \right]{ \exp }\left({\text{j}}\left[\left(p + k_{1}\right)\omega_{1} + (q + k_{2})\omega_{2}\right.\right.\right.\\ &\quad\left.\left.\left.+\,(r + k_{3})\omega_{3} \right]{\text{t}} \right)\exp \left(j\frac{1}{2}\beta_{2} L\left[(p + k_{1})\omega_{1} + \left({q + k_{2}} \right)\omega_{2} + {\left(r + k_{3}\right)\omega_{3}} \right]^{2} \right)\right\} \\ & \quad \times \left\{j^{- p - q - r} J_{p} J_{q} J_{r} \exp \left({- jq{\upvarphi}} \right)\exp \left[{- j\left(2 \right)r{\upvarphi}} \right]\right.\\ &\left.\quad\times \exp \left[- j\left({p\omega_{1} + q\omega_{2} + r\omega_{3}} \right)t\right]\exp \left({- j\frac{1}{2}\beta_{2} L\left({p\omega_{1} + q\omega_{2} + r\omega_{3}} \right)^{2}} \right) \right\} \end{aligned}$$
(17)

After simplification, we get

$$\begin{aligned} i_{{k_{1},k_{2},k_{3}}} &= \rho j^{{k_{1} + k_{2} + k_{3}}} \exp \left({jk_{2} \varphi} \right)\exp \left[{j\left(2 \right)k_{3} \varphi} \right]\exp \left[j\left(k_{1} \omega_{1} + k_{2} \omega_{2}\right.\right.\\ &\quad\left.\left.+\,k_{3} \omega_{3} \right)t \right]\exp \left[{- j\frac{1}{2}\beta_{2} L\left({k_{1} \omega_{1} + k_{2} \omega_{2} k_{3} \omega_{3}} \right)^{2}} \right]{\text{S}}_{1} \cdot {\text{S}}_{2} \cdot {\text{S}}_{3} \end{aligned}$$
(18)

where

$${\text{S}}_{1} = \mathop \sum \limits_{p = - \infty}^{\infty} J_{{p + k_{1}}} J_{p} \exp \left[{{\text{j}\upbeta}_{2} {\text{L}}\left({k_{1} + p} \right)\left({k_{1} \omega_{1}^{2} + k_{2} \omega_{1} \omega_{2} + \omega_{1} k_{3} \omega_{3}} \right)} \right]$$
(19)
$${\text{S}}_{2} = \mathop \sum \limits_{q = - \infty}^{\infty} J_{{q + k_{2}}} J_{q} \exp \left[{{\text{j}\upbeta}_{2} {\text{L}}\left({k_{2} + q} \right)\left({k_{2} \omega_{2}^{2} + k_{1} \omega_{1} \omega_{2} + k_{3} \omega_{3} \omega_{2}} \right)} \right]$$
(20)
$${\text{S}}_{3} = \mathop \sum \limits_{r = - \infty}^{\infty} J_{{r + k_{3}}} J_{r} \exp \left[{{\text{j}\upbeta}_{2} {\text{L}}\left({k_{3} + r} \right)\left({k_{3} \omega_{3}^{2} + k_{2} \omega_{2} \omega_{3} + k_{1} \omega_{1} \omega_{3}} \right)} \right]$$
(21)

By using the addition theorem for the Bessel function, \({\text{S}}_{1}\) can be simplified as:

$${\text{S}}_{1} = j^{{{\text{k}}_{1}}} J_{{k_{1}}} 2m\sin \frac{{\theta_{1}}}{2} {\text{e}}^{{{\text{jk}}_{1} \frac{{\theta_{1}}}{2}}}$$
(22)

Similarly, \({\text{S}}_{2}\) and \({\text{S}}_{3}\) can be simplified as:

$${\text{S}}_{2} = j^{{{\text{k}}_{2}}} J_{{k_{2}}} 2m\sin \frac{{\theta_{2}}}{2} {\text{e}}^{{{\text{jk}}_{2} \frac{{\theta_{2}}}{2}}}$$
(23)
$${\text{S}}_{3} = j^{{k_{3}}} J_{{k_{3}}} 2m\sin \frac{{\theta_{3}}}{2} {\text{e}}^{{{\text{j}}k_{3} \frac{{\theta_{3}}}{2}}}$$
(24)

Thus,

$$\begin{aligned} i_{{k_{1},k_{2},k_{3}}} & = \rho \left({- 1} \right)^{{k_{1} + k_{2} + k_{3}}} \exp \left({jk_{2} \varphi} \right)\exp \left[{j\left(2 \right)k_{3} \varphi} \right]\exp \left[{j\left({k_{1} \omega_{1} + k_{2} \omega_{2} + k_{3} \omega_{3}} \right)t} \right] \\ & \quad \times\,J_{{k_{1}}} \left(2m\sin \frac{{\theta_{1}}}{2}\right) \times J_{{k_{2}}} \left({2m\sin \frac{{\theta_{2}}}{2}} \right) \times J_{{k_{3}}} \left({2m\sin \frac{{\theta_{3}}}{2}} \right) \\ \end{aligned}$$
(25)

and the two tone signal with RF frequencies \(\omega_{1} \,and\, \omega_{2}\) is represented as:

$$i_{{k_{1},k_{2}}} = \rho \left({- 1} \right)^{{k_{1} + k_{2}}} \exp \left({\begin{array}{*{20}c} {jk_{2} \varphi} \\ \end{array}} \right)J_{{k_{1}}} \left({2m\sin \frac{{\theta_{1}}}{2}} \right) \times J_{{k_{2}}} \left({2m\sin \frac{{\theta_{2}}}{2}} \right)\exp \left[{j\left({k_{1} \omega_{1} + k_{2} \omega_{2}} \right)t} \right]$$
(26)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Sharma, S.K. & Singla, S. Performance analysis of phase modulated RoF based two and three tone transmission against intermodulation distortion over a dispersive link. Opt Quant Electron 48, 287 (2016). https://doi.org/10.1007/s11082-016-0566-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0566-2

Keywords

Navigation