Skip to main content
Log in

A novel method to reduce the period limitation in laser interference lithography

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This article presents a novel method to apply on reducing the period limitation in laser interference lithography (LIL) by preparing a kind of nanowire arrays with the period \({\uplambda }/(4\hbox {n}\times \hbox {sin}{\uptheta }\)) instead of \({\uplambda }/(2\hbox {n}\times \hbox {sin}{\uptheta }\)). Nanowire arrays with periods of 150 and 125 nm on Si (100) substrate were fabricated successfully with a 325 nm He–Cd continuous wave laser as a light source, based on the combined process of dry etching and wet etching. It is the slight over-etching in the dry etching process and keeping the fluorine carbon organic polymer layer intact during whole process of wet etching that guaranteed the nanowire generated from the platform between two adjacent etched facets. The width of the nanowire as narrow as 50 nm was fabricated by this method, which is much more interesting for the research on the small size effect. This method is proved to circumvent the period formula limitation of the traditional LIL and makes the preparation of nanostructures with much smaller size more feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amako, J., Sawaki, D., Fujii, E.: High-efficiency diffractive beam splitters surface-structured on submicrometer scale using deep-UV interference lithography. Appl. Opt. 48(27), 5105–5113 (2009)

    Article  ADS  Google Scholar 

  • Betzig, E., Trautman, J.K.: Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 257(5067), 189–195 (1992)

    Article  ADS  Google Scholar 

  • Bloomstein, T., Marchant, M.F., Deneault, S., Hardy, D.E., Rothschild, M.: 22-nm immersion interference lithography. Opt. Express 14(14), 6434–6443 (2006)

    Article  ADS  Google Scholar 

  • de Boor, J., Geyer, N., Wittemann, J.V., Gösele, U., Schmidt, V.: Sub-100 nm silicon nanowires by laser interference lithography and metal-assisted etching. Nanotechnology 21(9), 095302 (2010)

  • Fang, N., Lee, H., Sun, C., Zhang, X.: Sub-diffraction-limited optical imaging with a silver superlens. Science 308(5721), 534–537 (2005)

    Article  ADS  Google Scholar 

  • Feiertag, G., Ehrfeld, W., Freimuth, H., Kolle, H., Lehr, H., Schmidt, M., Sigalas, M.M., Soukoulis, C.M., Kiriakidis, G., Pedersen, T., Kuhl, J., Koenig, W.: Fabrication of photonic crystals by deep X-ray lithography. Appl. Phys. Lett. 71(11), 1441 (1997)

    Article  ADS  Google Scholar 

  • Fujita, J., Ohnishi, Y., Ochiai, Y., Matsui, S.: Ultrahigh resolution of calixarene negative resist in electron beam lithography. Appl. Phys. Lett. 68(9), 1297 (1996)

    Article  ADS  Google Scholar 

  • Gwyn, C.W., Stulen, R., Sweeney, D., Attwood, D.: Extreme ultraviolet lithography. J. Vac. Sci. Technol. B 16(6), 3142–3149 (1998)

    Article  Google Scholar 

  • Hecht, B., Sick, B., Wild, U.P., Deckert, V., Zenobi, R., Martin, O.J.F., Pohl, D.W.: Scanning near-field optical microscopy with aperture probes: fundamentals and applications. J. Chem. Phys. 112(18), 7761–7774 (2000)

    Article  ADS  Google Scholar 

  • Hicks, E.M., Zou, S., Schatz, G.C., Spears, K.G., Van Duyne, R.P., Gunnarsson, L., Rindzevicius, T., Kasemo, B., Käll, M.: Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. Nano Lett. 5(6), 1065–1070 (2005)

    Article  ADS  Google Scholar 

  • Huo, F.W., Zheng, G.F., Liao, X., Giam, L.R., Chai, J.A., Chen, X.D., Shim, W.Y., Mirkin, C.A.: Beam pen lithography. Nat. Nanotechnol. 5(9), 637–640 (2010)

    Article  ADS  Google Scholar 

  • Joong-Mok, P., Nalwa, K.S., Wai, L., Constant, K., Chaudhary, S., Kai-Ming, H.: Fabrication of metallic nanowires and nanoribbons using laser interference lithography and shadow lithography. Nanotechnology 21(21), 215301–215307 (2010)

    Article  ADS  Google Scholar 

  • Ke, D., Wathuthanthri, I., Weidong, M., Wei, X., Chang-Hwan, C.: Large-area pattern transfer of metallic nanostructures on glass substrates via interference lithography. Nanotechnology 22(28), 285306–285313 (2011)

    Article  Google Scholar 

  • Kiffner, M., Evers, J., Zubairy, M. S.: Resonant interferometric lithography beyond the diffraction limit. Phys. Rev. Lett. 100(7) (2008)

  • Krenn, J.R., Lamprecht, B., Ditlbacher, H., Schider, G., Salerno, M., Leitner, A., Aussenegg, F.R.: Non diffraction-limited light transport by gold nanowires. Europhys. Lett. 60(5), 663–669 (2002)

    Article  ADS  Google Scholar 

  • Liao, Z.Y., Al-Amri, M., Zubairy, M. S.: Quantum lithography beyond the diffraction limit via Rabi oscillations. Phys. Rev. Lett. 105(18) (2010)

  • Lim, C., Hong, M., Lin, Y., Xie, Q., Lukyanchuk, B., Senthil, A.S., Rahman, M.: Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning. Appl. Phys. Lett. 89(19), 1125 (2006)

    Article  ADS  Google Scholar 

  • Maier, S.A., Kik, P.G., Atwater, H.A., Meltzer, S., Harel, E., Koel, B.E., Requicha, A.A.G.: Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat. Mater. 2(4), 229–232 (2003)

    Article  ADS  Google Scholar 

  • Matsui, S., Kojima, Y., Ochiai, Y.: High-resolution focused ion beam lithography. Appl. Phys. Lett. 53(10), 868 (1988)

    Article  ADS  Google Scholar 

  • Seo, H., Kim, S.B., Song, J., Kim, Y., Soh, H., Kim, Y.C., Jeon, H.: Low temperature remote plasma cleaning of the fluorocarbon and polymerized residues formed during contact hole dry etching. J. Vac. Sci. Technol. B 20(4), 1548–1555 (2002)

    Article  Google Scholar 

  • Stearns, D.G., Rosen, R.S., Vernon, S.P.: Multilayer mirror technology for soft-X-ray projection lithography. Appl. Opt. 32(34), 6952–6960 (1993)

    Article  ADS  Google Scholar 

  • Vogelaar, L., Nijdam, W., Wolferen, H.A., Ridder, R.M., Segerink, F.B., Flück, E., Kuipers, L., Hulst, N.F.: Large area photonic crystal slabs for visible light with waveguiding defect structures: fabrication with focused ion beam assisted laser interference lithography. Adv. Mater. 13(20), 1551–1554 (2001)

    Article  Google Scholar 

  • Wang, H.F., Gan, F.X.: New approach to superresolution. Opt. Eng. 40(5), 851–855 (2001)

    Article  ADS  Google Scholar 

  • Wang, J.J., Walters, F., Liu, X., Sciortino, P., Deng, X.: High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids. Appl. Phys. Lett. 90(6), 061104 (2007)

    Article  ADS  Google Scholar 

  • Xia, J.H., Nyquist, J.E., Xu, Y.X., Roth, M.J.S., Miller, R.D.: Feasibility of detecting near-surface feature with Rayleigh-wave diffraction. J. Appl. Geophys. 62(3), 244–253 (2007)

    Article  ADS  Google Scholar 

  • Ye, Z.H., Hu, W.D., Yin, W.T., Huang, J., Lin, C., Hu, X.N., Ding, R.J., Chen, X.S., Lu, W., He, L.: Low-roughness plasma etching of HgCdTe masked with patterned silicon dioxide. J. Electron. Mater. 40(8), 1642–1646 (2011)

    Article  ADS  Google Scholar 

  • Ye, Z.H., Hu, W.D., Lei, W., Yang, L., Zhang, P., Huang, Y., Lin, C., Sun, C.H., Hu, X.N., Ding, R.J., Chen, X.S., Lu, W., He, L.: Investigations on a multiple mask technique to depress processing-induced damage of ICP-etched HgCdTe trenches. J. Electron. Mater. 42(11), 3164–3167 (2013)

    Article  ADS  Google Scholar 

  • Zheng, M., Yu, M., Liu, Y., Skomski, R., Liou, S.H., Sellmyer, D.J., Petryakov, V., Verevkin, Y.K., Polushkin, N., Salashchenko, N.: Magnetic nanodot arrays produced by direct laser interference lithography. Appl. Phys. Lett. 79(16), 2606–2608 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Hongxing Xu for the helpful and valuable discussions. This work was financially supported by the National High Technology Research and Development Program of China (No. 2011AA03A112) and the National Natural Science Foundation of China (Nos. 11374340, 11204360 and 61210014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longgui Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, L., Xuan, M., Ding, P. et al. A novel method to reduce the period limitation in laser interference lithography. Opt Quant Electron 47, 2331–2338 (2015). https://doi.org/10.1007/s11082-014-0113-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-014-0113-y

Keywords

Navigation