Skip to main content

Advertisement

Log in

Quasi solid state dye-sensitized solar cells based on polyvinyl alcohol (PVA) electrolytes containing \(\mathbf{I}^{\mathbf{-}}/\mathbf{I}_{\mathbf{3}}^{\mathbf{-}}\) redox couple

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Quasi solid state dye-sensitized solar cells (DSSCs) have been fabricated with electrolytes containing \(\text{ I }^{-}/\text{ I }_{3}^{-}\) redox couple using 80 % hydrolyzed polyvinyl alcohol (PVA) doped with potassium iodide (KI) and a mixture of potassium iodide and tetrapropyl ammonium iodide (\(\text{ Pr }_{4}\text{ NI }\)) salts. The quasi solid state gel polymer electrolytes were prepared using 1:1 ethylene carbonate (EC):propylene carbonate (PC) mixture. The solar cells have the structure of ITO/\(\text{ TiO }_{2}\)/N3-Dye/electrolyte/Pt/ITO. The conductivity of the electrolytes has been calculated from the bulk resistance value determined using the electrochemical impedance spectroscopy. The performance of the DSSCs has been studied by varying the concentration of the doping salts in the electrolyte and incident light intensity. The DSSC fabricated with the KI salt electrolyte containing 9.9 wt% PVA, 39.6 wt% EC, 39.6 wt% PC, 10.9 wt% KI\((+\text{ I }_{2})\) exhibited the best power conversion efficiency of 1.97 %. However, the DSSC with a double-salt electrolyte containing 9.9 wt% PVA: 39.6 wt% EC: 39.6 wt% PC: (6.5 wt% KI: 4.4 wt% \(\text{ Pr }_{4}\text{ NI }\)) (\(+\text{ I }_{2}\)) exhibited a higher efficiency of 3.27% under \(100 \text{ mW/cm }^{2}\) light intensity. The efficiency of this cell increased to 4.59 % under dimmer light of intensity of \(54 \text{ mW/cm }^{2}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agarwala, S., Thummalakunta, L.N.S.A., Cook, C.A., Peh, C.K.N., Wong, A.S.W., Ke, L., Ho, G.W.: Co-existence of LiI and KI in filler-free, quasi-solid-state electrolyte for efficient and stable dye-sensitized solar cell. J. Power Sourc. 196, 1651–1656 (2011a)

  • Agarwala, S., Peh, C.K.N., Ho, G.W.: Highly stable quasi-solid state dye sensitized solar cell: improved performance using diphenylamine in filler free KI and LiI electrolyte. Appl. Mater. Interface 3, 2383–2391 (2011b)

    Article  Google Scholar 

  • Bandara, T.M.W.J., Mellander, B.-E.: Evaluation of mobility, diffusion coefficient and density of charge carriers in ionic liquids and novel electrolytes based on a new model for dielectric response. In: Kokorin, Alexander (ed.) Ionic Liquids: Theory, Properties, New Approaches, pp. 383–406. InTech Janeza Trdine, Crotia (2011)

    Google Scholar 

  • Bandara, T.M.W.J., Dissanayake, M.A.K.L., Jayasundara, W.J.M.J.S.R., Albinsson, I., Mellander, B.-E.: Efficiency enhancement in dye sensitized solar cells using gel polymer electrolytes based on a tetrahexylammonium iodide and \(\text{ MgI }_{2}\) binary iodide system. Phys. Chem. Chem. Phys. 14, 8620–8627 (2012)

    Article  Google Scholar 

  • Chiba, Y., Islam, A., Watanabe, Y., Komiya, R., Koide, N., Han, L.: Dye-sensitized solar cells with conversion efficiency of 11.1%. Jpn. J. Appl. Phys. 45, L638–L640 (2006)

    Article  ADS  Google Scholar 

  • Cui, Y., Zhang, J., Zhang, X., Feng, J., Hong, Y., Zhu, Y.: High performance quasi-solid-state dye-sensitized solar cells based on acetamide-modified polymer electrolytes. Org. Electron. 13, 2561–2567 (2012)

    Article  Google Scholar 

  • Dissanayake, M.A.K.L., Thotawatthage, C.A., Senadeera, Bandara, T.M.W.J., Jayasundera, W.J.M.J.S.R., Mellander, B.-E.J.: Efficiency enhancement by mixed cation effect in dye-sensitized solar cells with PAN based gel polymer electrolyte. Photochem. Photobiol. A Chem. 246, 29–35 (2012)

    Article  Google Scholar 

  • Grätzel, M.: Dye-sensitized solar cells. J. Photochem. Photobiol. C Photochem. Rev. 4, 145–153 (2003)

    Article  Google Scholar 

  • Ileperuma, O.A., Kumara, G.R.A., Yang, H.-S., Murakami, K.: Quasi-solid electrolyte based on polyacrylonitrile for dye-sensitized solar cells. J. Photochem. Photobiol. A Chem. 217, 308–312 (2011)

    Article  Google Scholar 

  • Jeonga, W.-S., Lee, J.-W., Jung, S., Yun, J.H., Parka, N.-G.: Evaluation of external quantum efficiency of a 12.35% tandem solar cell comprising dye-sensitized and CIGS solar cells. Solar Energy Mater. Solar Cell. 95, 3419–3423 (2011)

    Article  Google Scholar 

  • Jia, Y.-T., Gong, J., Gu, X.-H., Kim, H.-Y., Dong, J., Shen, X.-Y.: Fabrication and characterization of poly (vinyl alcohol)/chitosan blend nanofibers produced by electrospinning method. Carbohydr. Polym. 67, 403–409 (2007)

    Article  Google Scholar 

  • Kelly, C.A., Farzad, F., Thompson, D.W., Stipkala, J.M., Meyer, G.J.: Cation controlled interfacial charge separation in sensitized nanocrystalline \(\text{ TiO }_{2}\) photoanodes. Langmuir 15, 7047–7054 (1999)

    Article  Google Scholar 

  • Kusama, H., Arakawa, H.: Influence of alkylaminopyridine additives in electrolytes on dye-sensitized solar cell performance. Sol. Energy Mater. Sol. Cells. 81, 87–99 (2004a)

    Google Scholar 

  • Kusama, H., Arakawa, H.: Influence of aminotriazole additives in electrolytic solution on dye-sensitized solar cell performance. J. Photochem. Photobiol. A Chem. 164, 103–110 (2004b)

    Article  Google Scholar 

  • Lan, Z., Wu, J., Wang, D., Hao, S., Lin, J., Huang, Y.: Quasi-solid state dye-sensitized solar cells based on gel polymer electrolyte with poly(acrylonitrile-co-styrene)/NaI+I2 sol. Solar Energy 80, 1483–1488 (2006)

    Article  Google Scholar 

  • Lan, Z., Wu, J., Lin, J., Huang, M., Li, P., Li, Q.: Influence of ionic additives NaI/I2 on the properties of polymer gel electrolyte and performance of quasi-solid-state dye-sensitized solar cells. Electrochim. Acta 53, 2296–2301 (2008)

    Article  Google Scholar 

  • Lee, K.-M., Wu, S.-J., Chen, C.-Y., Wu, C.-G., Ikegami, M., Miyoshi, K., Miyasaka, T., Ho, K.-C.: Efficient and stable plastic dye-sensitized solar cells based on a high light-harvesting ruthenium sensitizer. J. Mater. Chem. 19, 5009–5015 (2009)

    Article  Google Scholar 

  • Nazeeruddin, M.K., Kay, A., Rodicio, I., Humphry-Baker, R., Muller, E., Liska, P., Vlachopoulos, N., Grätzel, M.: Conversion of light to electricity by \(\text{ cis-X }_{2}\)Bis(2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = C1-, Br-, I-, CN-, and SCN-) on nanocrystalline \(\text{ TiO }_{2}\) electrodes. J. Am. Chem. Soc. 115, 6382–6390 (1993)

    Article  Google Scholar 

  • Nazeeruddin, M.K., Pechy, P., Grätzel, M.: Engineering of efficient panchromatic sensitizers for nanocrystalline \(\text{ TiO }_{2}\)-based solar cells. J. Am. Chem. Soc. 123, 1613–1624 (2001)

    Article  Google Scholar 

  • O’ Regan, B., Grätzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal \(\text{ TiO }_{2}\) films. Nature 353, 737–740 (1991)

    Article  Google Scholar 

  • Oskam, G., Bergeron, B.V., Meyer, G.J., Searson, P.C.: Pseudohalogens for dye-sensitized \(\text{ TiO }_{2}\) photoelectrochemical cells. J. Phys. Chem. B 105, 6867–6873 (2001)

    Article  Google Scholar 

  • Osman, Z., Ibrahim, Z.A., Arof, A.K.: Conductivity enhancement due to ion dissociation in plasticized chitosan based polymer electrolytes. Carbohydr. Polym. 44, 167–173 (2001)

    Article  Google Scholar 

  • Pelet, S., Moser, J.E., Gratzel, M.: Cooperative effect of adsorbed cations and iodide on the interception of back electron transfer in the dye sensitization of nanocrystalline \(\text{ TiO }_{2}\). J. Phys. Chem. B 104, 1791–1795 (2000)

    Article  Google Scholar 

  • Santa-Nokki, H., Busi, S., Kallioinen, J., Lahtinen, M., Korppi-Tommola, J.: Quaternary ammonium polyiodides as ionic liquid/soft solid electrolytes in dye-sensitized solar cells. J. Photochem. Photobiol. A Chem. 186, 29–33 (2007)

    Article  Google Scholar 

  • Sapp, S.A., Elliott, C.M., Contado, C., Caramori, S., Bignozzi, C.A.: Substituted polypyridine complexes of cobalt(II/III) as efficient electron-transfer mediators in dye-sensitized solar cells. J. Am. Chem. Soc. 37, 11215–11222 (2002)

    Article  Google Scholar 

  • Wang, P., Zakeeruddin, M.Z., Moser, J.E., Nazeeruddin, M.K., Sekiguchi, T., Gratzel, M.: A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nat. Mater. 2, 402–407 (2003)

    Article  ADS  Google Scholar 

  • Wu, J., Lan, Z., Wang, D., Hao, S., Lin, J., Wei, Y., Yin, S., Sato, T.: Quasi-solid state dye-sensitized solar cells-based gel polymer electrolytes with poly(acrylamide)–poly(ethylene glycol) composite. J. Photochem. Photobiol. A Chem. 181, 333–337 (2006)

    Article  Google Scholar 

  • Wu, J., Lan, Z., Wang, D., Hao, S., Lin, J., Huang, Y., Yin, S., Sato, T.: Gel polymer electrolyte based on poly(acrylonitrile-co-styrene) and a novel organic iodide salt for quasi-solid state dye-sensitized solar cell. Electrochim. Acta 51, 4243–4249 (2006)

    Google Scholar 

  • Xiang, W., Fang, Y., Lin, Y., Fang, S.: Polymer-metal complex as gel electrolyte for quasi-solid-state dye-sensitized solar cells. Electrochim. Acta 56, 1605–1610 (2011)

    Google Scholar 

  • Yang, C.-C., Wu, G.M.: Study of microporous PVA/PVC composite polymer membrane and it application to \(\text{ MnO }_{2}\) capacitors. Mater. Chem. Phys. 114, 948–955 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The Authors thank University of Malaya for the AFR Program grant No. RP003D-13AFR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Arof.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arof, A.K., Naeem, M., Hameed, F. et al. Quasi solid state dye-sensitized solar cells based on polyvinyl alcohol (PVA) electrolytes containing \(\mathbf{I}^{\mathbf{-}}/\mathbf{I}_{\mathbf{3}}^{\mathbf{-}}\) redox couple. Opt Quant Electron 46, 143–154 (2014). https://doi.org/10.1007/s11082-013-9723-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-013-9723-z

Keywords

Navigation