Skip to main content
Log in

Spent potliner treatment process optimization using a MADS algorithm

  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

In this paper, the general problem of chemical process optimization defined by a computer simulation is formulated. It is generally a nonlinear, non-convex, non-differentiable optimization problem over a disconnected set. A brief overview of popular optimization methods from the chemical engineering literature is presented. The recent mesh adaptive direct search (MADS) algorithm is detailed. It is a direct search algorithm, so it uses only function values and does not compute or approximate derivatives. This is useful when the functions are noisy, costly or undefined at some points, or when derivatives are unavailable or unusable. In this work, the MADS algorithm is used to optimize a spent potliners (toxic wastes from aluminum production) treatment process. In comparison with the best previously known objective function value, a 37% reduction is obtained even if the model failed to return a value 43% of the time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramson MA (2007) NOMADm optimization software. http://en.afit.edu/ENC/Faculty/MAbramson/NOMADm.html

  • Abramson MA (2005) Second order behavior of pattern search. SIAM J Optim 16(2):515–530

    Article  MATH  MathSciNet  Google Scholar 

  • Abramson MA, Audet C (2006) Convergence of mesh adaptive direct search to second-order stationary points. SIAM J Optim 17(2):606–619

    Article  MATH  MathSciNet  Google Scholar 

  • Aspentech (2007) http://www.aspentech.com/

  • Audet C, Dennis JE Jr (2004) A pattern search filter approach for nonlinear programming without derivatives. SIAM J Optim 14(4):980–1010

    Article  MATH  MathSciNet  Google Scholar 

  • Audet C, Dennis JE Jr (2006) Mesh adaptive direct search algorithms for constrained optimization. SIAM J Optim 17(1):188–217

    Article  MATH  MathSciNet  Google Scholar 

  • Audet C, Orban D (2006) Finding optimal algorithmic parameters using the mesh adaptive direct search algorithm. SIAM J Optim 17(3):642–664

    Article  MATH  MathSciNet  Google Scholar 

  • Audet C, Béchard V, Le Digabel S (2007) Nonsmooth optimization through mesh adaptive direct search and variable neighborhood search. J Glob Optim. doi:10.1007/s10898-007-9234-1

  • Béchard V (2004) Optimisation d’un procédé de traitement des brasques. Master’s thesis, Ecole Polytechnique de Montréal

  • Biegler LT, Grossmann IE (2004) Retrospective on optimization. Comput Chem Eng 28:1169–1192

    Google Scholar 

  • Biegler LT, Albuquerque J, Gopal V, Staus G, Ydstie BE (1999) Interior point sqp strategies for large-scale structured process optimization problems. Comput Chem Eng 23:543–554

    Article  Google Scholar 

  • Booker AJ, Dennis JE Jr, Frank PD, Serafini DB, Torczon V (1998) Optimization using surrogate objectives on a helicopter test example. In: Borggaard J, Burns J, Cliff E, Schreck S (eds) Optimal design and control. Progress in systems and control theory. Birkhäuser, Cambridge, pp 49–58

    Google Scholar 

  • Bowden RO, Hall JD (1998) Simulation optimization research and development. In: The 1998 winter conference on simulation, pp 1693–1698

  • Choi SH, Manousiouthakis V (1999) A stochastic approach to global optimization of chemical processes. Comput Chem Eng 23:1351–1356

    Article  Google Scholar 

  • Clarke FH (1990) Optimization and nonsmooth analysis. SIAM classics in applied mathematics, vol 5. SIAM, Philadelphia

    MATH  Google Scholar 

  • Coope ID, Price CJ (2000) Frame-based methods for unconstrained optimization. J Optim Theory Appl 107:261–274

    Article  MATH  MathSciNet  Google Scholar 

  • Courbariaux Y (2004) Étude et mise au point d’un procédé de traitement des brasques de l’industrie de l’aluminium. PhD thesis, Ecole Polytechnique de Montreal.

  • Courbariaux Y, Chaouki J, Guy C (2004) Update on spent potliners treatments: kinetics of cyanides destruction at high temperatures. Ind Eng Chem Res 43:5828–5837

    Article  Google Scholar 

  • Couture G, Audet C, Dennis JE Jr, Abramson MA (2007) The nomad project. http://www.gerad.ca/NOMAD/

  • Dantzig GB (1993) Linear programming and extensions. Springer, Berlin

    Google Scholar 

  • Dolan ED, Lewis RM, Torczon V (2003) On the local convergence properties of pattern search. SIAM J Optim 14(2):567–583

    Article  MATH  MathSciNet  Google Scholar 

  • Edgar TF, Himmelblau DM, Lasdon LS (2003) Optimization of chemical processes, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Hanke M, Li P (2000) Simulated annealing for the optimization of batch distillation processes. Comput Chem Eng 24:1–8

    Article  Google Scholar 

  • Hooke R, Jeeves TA (1961) Direct search solution of numerical and statistical problems. J Assoc Comput Mach 8:212–219

    MATH  Google Scholar 

  • Jones DR, Perttunen CD, Stuckman BE (1993) Lipschitzian optimization without the Lipschitz constant. J Optim Theory Appl 79(1):157–181

    Article  MATH  MathSciNet  Google Scholar 

  • Kokkolaras M, Audet C, Dennis JE Jr (2001) Mixed variable optimization of the number and composition of heat intercepts in a thermal insulation system. Optim Eng 2(1):5–29

    Article  MATH  MathSciNet  Google Scholar 

  • Lewis RM, Torczon V, Trosset MW (2000) Direct search methods: then and now. J Comput Appl Math 124:191–207

    Article  MATH  MathSciNet  Google Scholar 

  • Lin B, Miller DC (2004) Tabu search algorithm for chemical process optimization. Comput Chem Eng 28(11):2287–2306

    Article  Google Scholar 

  • Lobereiro J, Acevedo J (2004) Process synthesis and design using modular simulators: a genetic algorithm framework. Comput Chem Eng 28:1223–1236

    Google Scholar 

  • Marsden AL, Wang M, Dennis JE Jr, Moin P (2004a) Optimal aeroacoustic shape design using the surrogate management framework. Optim Eng 5(2):235–262

    Article  MATH  MathSciNet  Google Scholar 

  • Marsden AL, Wang M, Dennis JE Jr, Moin P (2004b) Suppression of airfoil vortex-shedding noise via derivative-free optimization. Phys Fluids 16(10):L83–L86

    Article  Google Scholar 

  • Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313

    Google Scholar 

  • Ouali MS, Aoudjit H, Audet C (2003) Optimisation des stratégies de maintenance. J Eur Syst Autom 37(5):587–605

    Article  Google Scholar 

  • Rockafellar RT (1980) Generalized directional derivatives and subgradients of nonconvex functions. Can J Math 32(2):257–280

    MATH  MathSciNet  Google Scholar 

  • Rosenbrock HH (1960) An automatic method for finding the greatest or least value of a function. Comput J 3:175–184

    Article  MathSciNet  Google Scholar 

  • Seader JD, Sieder WD, Lewin DR (1999) Process design principles: synthesis, analysis and evaluation. Wiley, New York

    Google Scholar 

  • Torczon V (1997) Pattern search methods for nonlinear optimization. SIAM J Optim 6:7–11

    MathSciNet  Google Scholar 

  • Zamora JM, Grossmann IE (1998) Continuous global optimization of structured process systems models. Comput Chem Eng 22:1749–1770

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Audet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Audet, C., Béchard, V. & Chaouki, J. Spent potliner treatment process optimization using a MADS algorithm. Optim Eng 9, 143–160 (2008). https://doi.org/10.1007/s11081-007-9030-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-007-9030-2

Keywords

Navigation