Skip to main content
Log in

A computationally efficient metamodeling approach for expensive multiobjective optimization

  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

This paper explores a new metamodeling framework that may collapse the computational explosion that characterizes the modeling of complex systems under a multiobjective and/or multidisciplinary setting. Under the new framework, a pseudo response surface is constructed for each design objective for each discipline. This pseudo response surface has the unique property of being highly accurate in Pareto optimal regions, while it is intentionally allowed to be inaccurate in other regions. In short, the response surface for each design objective is accurate only where it matters. Because the pseudo response surface is allowed to be inaccurate in other regions of the design space, the computational cost of constructing it is dramatically reduced. An important distinguishing feature of the new framework is that the response surfaces for all the design objectives are constructed simultaneously in a mutually dependent fashion, in a way that identifies Pareto regions for the multiobjective problem. The new framework supports the puzzling notion that it is possible to obtain more accuracy and radically more design space exploration capability, while actually reducing the computation effort. This counterintuitive metamodeling paradigm shift holds the potential for identifying highly competitive products and systems that are well beyond today’s state of the art.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PRS:

Pseudo Response Surface

RS:

Response Surface

\(\tilde{(\textrm{ })}\) :

Denotes approximate quantity

g :

Vector of inequality constraints (see (2))

h :

Vector of equality constraints (see (3))

n :

Number of design objectives (see (1))

n p :

Number of explored nearly Pareto points (see (20))

n f :

Number of pseudo points

p k :

k-th utopia plane point (see (5))

x :

Vector of design variables (see (1))

x i(f) :

i-th pseudo design point (Fig. 8)

\(\tilde{x}^{i(l)}\) :

i-th data point used to build the local approximations \(\tilde{\mu}^{(l)}(x)\) (see (14))

x (p) :

Set of nearly Pareto designs (see (20))

x pk :

Nearly Pareto design corresponding to the utopia plane point p k (see (20))

μ j (x):

j-th computationally expensive design objective (see (1))

\(\tilde{\mu}_{j}^{(l)}(x)\) :

Local approximation of the j-th design objective (see (15))

μ (p) :

Set of nearly Pareto points in objective space (see (21))

μ pk :

Set of nearly Pareto point in the objective space, corresponding to the utopia plane point p k (see (21))

\(\tilde{\mu_{j}}^{\mathrm{PRS}}(x)\) :

Pseudo response surface model for the j-th design objective (Fig. 9)

References

  • Alexandrov NM, Lewis RM (2001) An overview of first-order model management for engineering optimization. Optim Eng 2:413–430

    Article  MATH  Google Scholar 

  • Balabanov VO, Giunta AA, Golovidov O, Grossman B, Mason WH, Watson LT, Haftka RT (1999) Reasonable design space approach to response surface approximation. J Aircr 36(1):308–315

    Google Scholar 

  • Bokose FL, Vandevelde L, Melkebeek JAA (2004) Sequential approximate multiobjective optimisation of switched reluctance motor design using surrogate models and nongradient local search algorithm. IEE Proc Sci Meas Technol 151(6):471–475

    Article  Google Scholar 

  • Box GE, Draper NR (1987) Empirical model-building and response surfaces. Wiley, New York

    MATH  Google Scholar 

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  • Giunta AA, Watson LT (1998) A comparison of approximation modeling techniques: Polynomial versus interpolating models. Technical Report AIAA-98-4758

  • Giunta AA, Balabanov V, Haim D, Grossman B, Mason WH, Watson LT, Haftka RT (1997) Multidisciplinary optimisation of a supersonic transport using design of experiments theory and response surface modeling. Aeronaut J 101(1008):347–356

    Google Scholar 

  • Hosder S, Watson LT, Grossman B, Mason WH, Kim H, Haftka RT, Cox SE (2001) Polynomial response surface approximations for the multidisciplinary design optimization of high speed civil transport. Optim Eng 2(4):431–452

    Article  MATH  Google Scholar 

  • Hussain MF, Barton RR, Joshi SB (2002) Metamodeling: Radial basis functions, versus polynomials. Eur J Oper Res 138(1):142–154

    Article  MATH  Google Scholar 

  • Jin R, Chen W, Simpson T (2001) Comparative studies of metamodelling techniques under multiple modelling criteria. Struct Multidiscip Optim 23(1):1–13

    Article  Google Scholar 

  • Koch PN, Simpson TW, Allen JK, Mistree F (1999) Statistical approximations for multidisciplinary design optimization: the problem of size. J Aircr 36(1):275–286

    Google Scholar 

  • Leary SJ, Bhaskar A, Keane AJ (2001) A constraint mapping approach to the structural optimization of an expensive model using surrogates. Optim Eng 2:385–398

    Article  MATH  MathSciNet  Google Scholar 

  • Mattson CA, Mullur AA, Messac A (2004) Smart Pareto filter: obtaining a minimal representation of multiobjective design space. Eng Optim 36(6):721–740

    Article  MathSciNet  Google Scholar 

  • Messac A, Mattson CA (2004) Normal constraint method with guarantee of even representation of complete Pareto frontier. AIAA J 42(10):2101–2111

    Google Scholar 

  • Messac A, Ismail-Yahaya A, Mattson CA (2003) The normalized normal constraint method for generating the Pareto frontier. Struct Multidiscip Optim 25(2):86–98

    Article  MathSciNet  Google Scholar 

  • Messac A, Van Dessel S, Mullur AA, Maria A (2004) Optimization of large scale rigidified inflatable structures for housing using physical programming. Struct Multidiscip Optim 26(1–2):139–151

    Article  Google Scholar 

  • Mullur AA, Messac A (2005a) Extended radial basis functions: more flexible and effective metamodeling. AIAA J 43(6):1306–1315

    Google Scholar 

  • Mullur AA, Messac A (2005b) Higher metamodel accuracy using computationally efficient pseudo response surfaces. In: 46th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference AIAA-2005-2058, Austin, TX, April 2005

  • Mullur AA, Messac A (2005c) Multiobjective structural optimization using computationally efficient pseudo response surfaces. In: 6th world congress on structural and multidisciplinary optimization, Rio de Janeiro, May–June 2005

  • Myers RH, Montgomery DC (2002) Response surface methodology, 2nd edn. Wiley–Interscience, New York

    MATH  Google Scholar 

  • Nakayama H, Arakawa M, Sasaki R (2002) Simulation-based optimization using computational intelligence. Optim Eng 3(2):201–214

    Article  MATH  MathSciNet  Google Scholar 

  • Papadrakakis M, Lagaros ND, Tsompanakis Y (1998) Structural optimization using evolution strategies and neural networks. Comput Methods App Mech Eng 156(1–4):309–333

    Article  MATH  Google Scholar 

  • Renaud JE, Gabriele GA (1993) Improved coordination in non-hierarchic system optimization. AIAA J 31(12):2367–2373

    MATH  Google Scholar 

  • Rodriguez JF, Renaud JE, Wujek BA, Tappeta RV (2000) Trust region model management in multidisciplinary design optimization. J Comput Appl Math 124:139–154

    Article  MATH  MathSciNet  Google Scholar 

  • Rodriguez JF, Perez VM, Padmanabhan D, Renaud JE (2001) Sequential approximate optimization using variable fidelity response surface approximations. Struct Multidiscip Optim 22:24–34

    Article  Google Scholar 

  • Sakata S, Ashida F, Zako M (2003) Structural optimization using kriging approximation. Comput Methods Appl Mech Eng 192:923–939

    Article  MATH  Google Scholar 

  • Simpson TW, Peplinski JD, Koch PN, Allen JK (2001) Metamodels for computer-based engineering design: Survey and recommendations. Eng Comput 17:129–150

    Article  MATH  Google Scholar 

  • Sobester A, Leary SJ, Keane AJ (2004) A parallel updating scheme for approximating and optimizing high fidelity computer simulations. Struct Multidiscip Optim 27:371–383

    Article  Google Scholar 

  • Sobieski IP, Kroo IM (2000) Collaborative optimization using response surface estimation. AIAA J 38(10):1931–1938

    Article  Google Scholar 

  • Vanderplaats RD (2001) Genesis: structural analysis and optimization, user manual, vol II, August 2001. Version 7.0

  • Van Veldhuizen DA, Lamont GB (1999) Multiobjective evolutionary algorithm test suites. In: Proceedings of the ACM symposium on applied computing, San Antonio, TX, February–March 1999, pp 351–357

  • Wilson B, Cappelleri D, Simpson WT, Frecker M (2001) Efficient Pareto frontier exploration using surrogate approximations. Optim Eng 2:31–50

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achille Messac.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Messac, A., Mullur, A.A. A computationally efficient metamodeling approach for expensive multiobjective optimization. Optim Eng 9, 37–67 (2008). https://doi.org/10.1007/s11081-007-9008-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-007-9008-0

Keywords

Navigation