Skip to main content
Log in

Müntz-Legendre wavelet operational matrix of fractional-order integration and its applications for solving the fractional pantograph differential equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper presents a new computational technique for solving fractional pantograph differential equations. The fractional derivative is described in the Caputo sense. The main idea is to use Müntz-Legendre wavelet and its operational matrix of fractional-order integration. First, the Müntz-Legendre wavelet is presented. Then a family of piecewise functions is proposed, based on which the fractional order integration of the Müntz-Legendre wavelets are easy to calculate. The proposed approach is used this operational matrix with the collocation points to reduce the under study problem to a system of algebraic equations. An estimation of the error is given in the sense of Sobolev norms. The efficiency and accuracy of the proposed method are illustrated by several numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lakshmikantham, V., Leela, S.: Differential and integral inequalities. Academic Press, New York (1969)

    MATH  Google Scholar 

  2. Dehghan, M., Shakeri, F.: The use of the decomposition procedure of Adomian for solving a delay differential equation arising in electrodynamics. Phys. Scr. 78, 1–11 (2008)

    Article  MATH  Google Scholar 

  3. Bagley, R.L., Torvik, P.J.: A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27, 201–210 (1983)

    Article  MATH  Google Scholar 

  4. Magin, R.L.: Fractional calculus in bioengineering. Crit. Rev. Biomed. Eng. (2004)

  5. Chow, T.S.: Fractional dynamics of interfaces between soft-nanoparticles and rough substrates. Phys. Lett. A. 342, 148–155 (2006)

    Article  Google Scholar 

  6. He, J.H.: Some applications of nonlinear fractional differential equations and their approximations. Bull. Sci. Tech. 15(2), 86–90 (1999)

    MathSciNet  Google Scholar 

  7. Panda, R., Dash, M.: Fractional generalized splines and signal processing. Signal Process. 86, 2340–2350 (2006)

    Article  MATH  Google Scholar 

  8. Bohannan, G.W.: Analog fractional order controller in temperature and motor control applications. J. Vib. Control. 14, 1487–1498 (2008)

    Article  MathSciNet  Google Scholar 

  9. Diethelm, K., Walz, G.: Numerical solution of fractional order differential equations by extrapolation. Numer. Algor. 16(3), 231–253 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gaul, L., Klein, P., Kemple, S.: Damping description involving fractional operators. Mech. Syst. Signal Process 5, 81–88 (1991)

    Article  Google Scholar 

  11. Suarez, L., Shokooh, A.: An eigenvector expansion method for the solution of motion containing fractional derivatives. J. Appl. Mech. 64, 629–735 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Podlubny, I.: Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Academic Press, New York (1998)

    MATH  Google Scholar 

  13. Momani, S., Al-Khaled, K.: Numerical solutions for systems of fractional differential equations by the decomposition method. Appl. Math. Comput. 162, 1351–1365 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Odibat, Z., Momani, S.: Application of variational iteration method to nonlinear differential equations of fractional order. Int. J. Nonl. Sci. Numer. Simul. 7, 27–34 (2006)

    MathSciNet  Google Scholar 

  15. Odibat, Z., Shawagfeh, N.: Generalized Taylor’s formula. Appl. Math. Comput. 186(1), 286–293 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Meerschaert, M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Feng, L.B., Zhuang, P., Liu, F., Turner, I., Gu, Y.T.: Finite element method for space-time fractional diffusion equation. Numer. Algor. 72(3), 749–767 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Arikoglu, A., Ozkol, I.: Solution of fractional integro-differential equations by using fractional differential transform method. Chaos Sol. Frac. 40, 521–529 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rawashdeh, E.A.: Numerical solution of fractional integro-differential equations by collocation method. Appl. Math. Comput. 176, 1–6 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Bhrawy, A.H.: A Jacobi spectral collocation method for solving multi-dimensional nonlinear fractional sub-diffusion equations. Numer. Algor. 73(1), 91–113 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dehghan, M., Manafian, J., Saadatmandi, A.: Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer. Meth. Part. Differ. Equ. 26(2), 448–479 (2009)

    MathSciNet  MATH  Google Scholar 

  22. Saadatmandi, A., Dehghan, M.: A new operational matrix for solving fractional-order differential equations. Comput. Math. Appl. 59, 1326–1336 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rahimkhani, P., Ordokhani, Y., Babolian, E.: Fractional-order Bernoulli wavelets and their applications. Appl. Math. Model. 40, 8087–8107 (2016)

    Article  MathSciNet  Google Scholar 

  24. Bhalekar, S., Daftardar-Gejji, V.: A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order. J. Fract. Calcul. Appl. 1(5), 1–9 (2011)

    MATH  Google Scholar 

  25. Morgado, M.L., Ford, N.J., Lima, P.M.: Analysis and numerical methods for fractional differential equations with delay. J. Comput. Appl. Math. 252, 159–168 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Khader, M.M., Hendy, A.S.: The approximate and exact solutions of the fractional-order delay differential equations using Legendre pseudo-spectral method. Int. J. Pure Appl. Math. 74(3), 287–297 (2012)

    MATH  Google Scholar 

  27. Wang, Z.: A numerical method for delayed fractional-order differential equations. J. Appl. Math. 2013, 1–7 (2013)

    MathSciNet  Google Scholar 

  28. Moghaddam, B.P., Mostaghim, Z.S.: A numerical method based on finite difference for solving fractional delay differential equations. J. Taibah. Univ. Sci. 7, 120–127 (2013)

    Article  Google Scholar 

  29. Wang, Z., Huang, X., Zhou, J.: A numerical method for delayed fractional-order differential equations: based on G-L definition. Appl. Math. Inf. Sci. 7(2), 525–529 (2013)

    Article  MathSciNet  Google Scholar 

  30. Yang, Y., Huang, Y.: Spectral-collocation methods for fractional pantograph delay-integro-differential equations. Adv. Math. Phys. 2013, 1–14 (2013)

    Google Scholar 

  31. Yousefi, S.A., Lotfi, A.: Legendre multiwavelet collocation method for solving the linear fractional time delay systems. Cent. Eur. J. Phys. 11(10), 1463–1469 (2013)

    Google Scholar 

  32. Saeed, U., Rehman, M.: Hermite wavelet method for fractional delay differential equations. J. Differ. Equ. 2014, 1–8 (2014)

    Article  Google Scholar 

  33. Saeed, U., Rehman, M., Iqbal, M.A.: Modified Chebyshev wavelet methods for fractional delay-type equations. Appl. Math. Comput. 264, 431–442 (2015)

    MathSciNet  Google Scholar 

  34. Iqbal, M.A., Saeed, U., Mohyud-Din, S.T.: Modified Laguerre wavelets method for delay differential equations of fractional-order. Egy. J. Basic Appl. Sci. 2, 50–54 (2015)

    Google Scholar 

  35. Pimenov, V.G., Hendy, A.S.: Numerical studies for fractional functional differential equations with delay based on BDF-type shifted Chebyshev approximations. Abstr. Appl. Anal. 2015, 1–12 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Rahimkhani, P., Ordokhani, Y., Babolian, E.: A new operational matrix based on Bernoulli wavelets for solving fractional delay differential equations. Numer. Algor. 74(1), 223–245 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Strömberg, J.O.: A modified Franklin system and higher order spline systems on Rn as unconditional bases for Hardy spaces Proceedings of Harmonic Analysis, pp 475–494. University of Chicago (1981)

  38. Grossman, A., Morlet, J.: Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J. Math. Anal. 15, 723–736 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  39. Meyer, Y.: Principe d’incertitude bases hilbertiennes et algèbres d’opérateurs. Sé,minaire N Bourbaki. 662, 209–223 (1985)

    Google Scholar 

  40. Yuanlu, L., Weiwei, Z.: Haar wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations. Appl. Math. Comput. 216, 2276–2285 (2010)

    MathSciNet  MATH  Google Scholar 

  41. Yuanlu, L.: Solving a nonlinear fractional differential equation using Chebyshev wavelets. Commun. Nonl. Sci. Num. Simulat. 15, 2284–2292 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Saeedi, H., Mohseni Moghadam, M., Mollahasani, N., Chuev, G.N.: A CAS wavelet method for solving nonlinear Fredholm integro-differential equations of fractional order. Commun. Nonl. Sci. Num. Simulat. 16, 1154–1163 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Rehman, M., Ali Khan, R.: The Legendre wavelet method for solving fractional differential equations. Communm. Nonl. Sci. Numer. Simulat. 16, 4163–4173 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  44. Keshavarz, E., Ordokhani, Y., Razzaghi, M.: Bernoulli wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations. Appl. Math. Model. 38, 6038–6051 (2014)

    Article  MathSciNet  Google Scholar 

  45. Mokhtary, P., Ghoreishi, F., Srivastava, H.M.: The müntz-legendre tau method for fractional differential equations. Appl. Math. Model. 40(2), 671–684 (2016)

    Article  MathSciNet  Google Scholar 

  46. Esmaeili, S.H., Shamsi, M., Luchkob, Y.: Numerical solution of fractional differential equations with a collocation method based on müntz polynomials. Comput. Math. Appl. 62, 918–929 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. Krishnasamy, V.S., Razzaghi, M.: The numerical solution of the Bagley-Torvik equation with fractional Taylor method. J. Comput. Nonl. Dyn. 11(5), 1–6 (2016)

    Google Scholar 

  48. Sedaghat, S., Nemati, S., Ordokhani, Y.: Application of the hybrid functions to solve neutral delay functional differential equations. Int. J. Comput. Math. 94(3), 503–514 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  49. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral methods. Fundamentals in single domains. Springer, Berlin (2006)

    MATH  Google Scholar 

  50. Marzban, H.R., Tabrizidooz, H.R., Razzaghi, M.: A composite collocation method for the nonlinear mixed Volterra-Fredholm-Hammerstein integral equations. Commun. Nonl. Sci. Numer. Simul. 16, 1186–1194 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  51. Mashayekhi, S., Razzaghi, M., Wattanataweekul, M.: Analysis of multi-delay and piecewise constant delay systems by hybrid functions approximation. Differ. Equ. Dyn. Syst. 24(1), 1–20 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  52. Sezer, M., Yalcinbas, S., Sahin, N.: Approximate solution of multi-pantograph equation with variable coefficients. J. Comput. Appl. Math. 214, 406–416 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  53. Karimi Vanani, S., Aminataei, A.: On the numerical solution of delay differential equations using multiquadric approximation scheme. Funct. Differ. Equ. 17(3), 391–399 (2010)

    MathSciNet  MATH  Google Scholar 

  54. Evans, D.J., Raslan, K.R.: The Adomian decomposition method for solving delay differential equation. Int. J. Comput. Math. 81(2), 49–54 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  55. Rangkuti, Y.M., Noorani, M.S.M.: The exact solution of delay differential equations using coupling variational iteration with Taylor series and small term. Bull. Math. 4(1), 1–15 (2012)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

Authors are very grateful to one of the reviewers for carefully reading the paper and for his(her) comments and suggestions which have improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Ordokhani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimkhani, P., Ordokhani, Y. & Babolian, E. Müntz-Legendre wavelet operational matrix of fractional-order integration and its applications for solving the fractional pantograph differential equations. Numer Algor 77, 1283–1305 (2018). https://doi.org/10.1007/s11075-017-0363-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-017-0363-4

Keywords

Navigation