Skip to main content
Log in

Asymptotic behavior and finite element error estimates of Kelvin-Voigt viscoelastic fluid flow model

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this article, the convergence of the solution of the Kelvin-Voigt viscoelastic fluid flow model to its steady state solution with exponential rate is established under the uniqueness assumption. Then, a semidiscrete Galerkin method for spatial direction keeping time variable continuous is considered and asymptotic behavior of the semidiscrete solution is derived. Moreover, optimal error estimates are achieved for large time using steady state error estimates. Based on linearized backward Euler method, asymptotic behavior for the fully discrete solution is studied and optimal error estimates are derived for large time. All the results are even valid for κ→0, that is, when the Kelvin-Voigt model converges to the Navier-Stokes system. Finally, some numerical experiments are conducted to confirm our theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bajpai, S., Nataraj, N., Pani, Amiya, K., Damazio, P., Yuan, J. Y.: Semidiscrete Galerkin method for equations of motion arising in Kelvin-Voigt model of viscoelastic fluid flow. Numer. Meth. PDEs 29, 857–883 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bajpai, S., Nataraj, N., Pani, Amiya, K.: On fully discrete finite element schemes for equation of motion of Kelvin-Voight Fluids. Int. J. Numer. Anal. Mod. 10, 481–507 (2013)

    Google Scholar 

  3. Burtscher, M., Szczyrba, I.: Numerical modeling of brain dynamics in traumatic situations–impulsive translations. In: Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences, pp. 205–211 (2005)

  4. Burtscher, M., Szczyrba, I.: Computational simulation and visualization of traumatic brain injuries. Conf. Model. Simul. Visual. Methods, 101–107 (2006)

  5. Cao, Y., Lunasin, E., Titi, E.S.: Global well-posedness of the three dimensional viscous and inviscid simplified Bardina turbulence models. Commun. Math. Sci. 4, 823–848 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cotter, C. S., Smolarkiewicz, P. K., Szezyrba, I. N.: A viscoelastic model from brain injuries. Int. J. Numer. Meth. Fluids 40, 303–311 (2002)

    Article  MATH  Google Scholar 

  7. Girault, V., Raviart, P. A.: Finite Element Approximation of the Navier-Stokes Equations, Lecture Notes in Mathematics. Springer, New York (1980)

    Google Scholar 

  8. He, Y., Lin, Y., Shen, S., Tait, R.: On the convergence of viscoelastic fluid flows to a steady state. Adv. Diff. Equa. 7, 717–742 (2002)

    MathSciNet  MATH  Google Scholar 

  9. Kesavan, S.: Topics in Functional Analysis and Application, New Age International. P)Ltd Publishers, New Delhi (2008)

    Google Scholar 

  10. Koseoglu, A.: The Navier-Stokes-Voigt Model and Convergence to Equilibrium and Statistical Equilibrium, MS Thesis. Department of Mathematics, Univ. Pittsburgh (2011)

    Google Scholar 

  11. Kundu, S., Pani, Amiya, K.: Stabilization of Kelvin-Voigt viscoelastic fluid flow model. arXiv:1606.03653

  12. Layton, W.Y., Rebholz, G.L.: On relaxation time in the Navier-Stokes- Voigt model. Int. J. Comput. Fluid Dyn. 27, 184–187 (2013)

    Article  MathSciNet  Google Scholar 

  13. Oskolkov, A.P.: The uniqueness and global solvability for boundary value problems for the equations of motion of water solutions of polymers. Zapiski Nauch. Sem. POMI 38, 98–136 (1973)

    Google Scholar 

  14. Oskolkov, A.P.: Theory of nonstationary flows of Kelvin-Voigt fluids. J. Math. Sci. 28, 751–758 (1985)

    Article  MATH  Google Scholar 

  15. Oskolkov, A.P.: Initial-boundary value problems for equations of motion of Kelvin-Voigt fluids and Oldroyd fluids. Proc. Steklov Inst. Math. 2, 137–182 (1989)

    MATH  Google Scholar 

  16. Oskolkov, A. P., Shadiev, R.D.: Non local problems in the theory of the motion equations of Kelvin-Voigt fluids. J. Math. Sci. 59, 1206–1214 (1992)

    Article  Google Scholar 

  17. Oskolkov, A. P., Shadiev, R.D.: Towards a theory of global solvability on \([0,\infty ]\) of initial-boundary value problems for the equations of motion of Oldroyd and Kelvin-Voigt fluids. J. Math. Sci. 68, 240–253 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Oskolkov, A.P.: On an estimate, uniform on the semiaxis t≥0, for the rate of convergence of Galerkin approximations for the equations of motion of KelvinVoight fluids. J. Math. Sci. 62(3), 2802–2806 (1992)

    Article  Google Scholar 

  19. Pany, A. K., Bajpai, S., Pani, Amiya, K.: Optimal error estimates for semidiscrete Galerkin approximations to equations of motion described by KelvinVoigt viscoelastic fluid flow model. J. Comput. Appl. Math. 302, 234–257 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pavlovskii, V.A.: To the equation of theoretical description of weak aqueous polymer solutions. Sov. Phy. Dokl. 200, 809–812 (1971)

    Google Scholar 

  21. Sobolevskii, P.E.: Stabilization of viscoelastic fluid motion(Oldroyd’s mathematical model). Diff. Integr. Equa. 7, 1597–1612 (1994)

    MathSciNet  MATH  Google Scholar 

  22. Temam, R.: Navier-Stokes Equations, Theory and Numerical Analysis. North-Holland (2002)

  23. Wang, K., He, Y., Lin, Y.: Long time numerical stability and asymptotic analysis for the viscoelastic Oldryod flows. Disc. Cont. Dyn. Sys. Ser. B 17, 1551–1573 (2012)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amiya K. Pani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, S., Bajpai, S. & Pani, A.K. Asymptotic behavior and finite element error estimates of Kelvin-Voigt viscoelastic fluid flow model. Numer Algor 75, 619–653 (2017). https://doi.org/10.1007/s11075-016-0214-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-016-0214-8

Keywords

Mathematics Subject Classifications (2010)

Navigation