Skip to main content
Log in

An embedded 3(2) pair of nonlinear methods for solving first order initial-value ordinary differential systems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we present two families of second-order and third-order explicit methods for numerical integration of initial-value problems of ordinary differential equations. Firstly, a family of second-order methods with two free parameters is derived by considering a suitable rational approximation to the theoretical solution of the problem at some grid points. Imposing that the principal term of the local truncation error of this family vanishes, we obtain an expression for one of the parameters in terms of the other. With this approach, a new one-parameter family of third-order methods is obtained. By selecting any 3(2) pair of second and third order methods, they can be implemented as an embedded type method, thus leading to a variable step-size formulation. We have considered one 3(2) pair of second and third order methods and made a comparison of numerical results with several ode solvers which are currently used in practice. The comparison of numerical results shows that the embedded 3(2) pair outperforms the methods considered for comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deuflhard, P.: Newton Methods for Nonlinear Problems. Springer, Berlin (2004)

    MATH  Google Scholar 

  2. Brezinski, C.: Intégration des systèmes différentiels à l’aide du ρ-algorithme. C. R. Acad. Sci. Paris. 278 A, 875–878 (1974)

    MATH  Google Scholar 

  3. Brezinski, C., Redivo-Zaglia, M.: Extrapolation Methods: Theory and Practice. Elsevier (1991)

  4. Ramos, H.: A non-standard explicit integration scheme for initial-value problems. Appl. Math. Comp. 189, 710–718 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ramos, H.: A nonlinear explicit one-step integration scheme for singular autonomous initial value problems. In: Simos, T. (ed.) AIP Conference Proceedings 936, New York, pp 448–451 (2007)

  6. Lambert, J.D.: Nonlinear methods for stiff systems of ordinary differential equations. In: Proc. conference on numerical solution of ordinary differential equations 363, University of Dundee, pp 75–88 (1973)

  7. Van Niekerk, F.D.: Rational one-step methods for initial value problems. Comput. Math. Appl. 16(12), 1035–1039 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Oliver, J.: A curiosity of low-order explicit Runge-Kutta methods. Math. of. Comp. 29(132), 1032–1036 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  9. Negrut, D., Jay, L.O., Khude, N.: A discussion of low-order numerical integration formulas for rigid and flexible multi-body dynamics. J. of Comput. Nonlinear Dynam. 4, 210081–2100811 (2009)

    Article  Google Scholar 

  10. Hilber, H.M., Hughes, T.J.R., Taylor, R.L.: Improved numerical dissipation for time integration algorithms in structural dynamics. Earthquake Eng. Struct. Dyn. 5, 283–292 (1977)

    Article  Google Scholar 

  11. Newmark, N.M.: A method of computation for structural dynamics. J. Engrg. Mech. Div. 112, 67–94 (1959)

    Google Scholar 

  12. Sofroniou, M.: Order stars and linear stability theory. J. Symb. Comp. 21, 101–131 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wanner, G., Hairer, E., Nörsett, S.P.: Order Stars and stability theorems. BIT 18, 475–489 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  14. Iserles, A., Nörsett, S.P.: Order Stars. Chapman and Hall, London (1991)

    Book  MATH  Google Scholar 

  15. Leveque, R.J.: Finite Difference Methods for Ordinary and Partial Differential Equations. Siam (2007)

  16. Shampine, L.F., Witt, A.: Control of local error stabilizes integrations. J. Comp. Appl. Math. 62, 333–351 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Calvo, M., Montijano, J.I., Randez, L.: On the change of step size in multi-step codes. Numer. Alg. 4, 283–304 (1993)

    Article  MATH  Google Scholar 

  18. Watts, H.A.: Starting step size for an ODE solver. J. Comp. Appl. Math. 9, 177–191 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sedgwick, A.E.: An effective variable order variable step Adams method. Dept. of Computer Science Rept, vol. 53. University of Toronto, Toronto, Canada (1973)

    Google Scholar 

  20. Lambert, J.D.: Numerical Methods for Ordinary Differential Systems: The Initial Value Problem. John Wiley, New York (1991)

    MATH  Google Scholar 

  21. Lambert, J.D.: Computational Methods in Ordinary Differential Equations. Wiley, London (1973)

    MATH  Google Scholar 

  22. Jain, M.K.: Numerical Solution of Differential Equations. New Age Inter, (P) Ltd., New Delhi (2014)

    Google Scholar 

  23. Hairer, E., Nörsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I. Springer, Berlin (1993)

    MATH  Google Scholar 

  24. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  25. Shampine, L.F., Gordon, M.K.: Computer Solution of Ordinary Differential Equations: The Initial Value Problem. Freeman, San Francisco CA (1975)

  26. Calvo, M., Mar-Quemada, M.: On the stability of rational Runge-Kutta methods. J. Comput. Appl. Math. 8, 289–293 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sottas, G.: Rational Runge-Kutta methods are not suitable for stiff systems of ODEs. J. Comput. Appl. Math. 10, 169–174 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hairer, E.: Unconditionally stable explicit methods for parabolic equations. Numer. Math. 35, 57–68 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rosenbrock, H.H.: Some general implicit processes for the numerical solution of differential equations. Comput. J. 5, 329–330 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shampine, L.F., Reichelt, M.W.: The MATLAB ODE Suite. SIAM J. Sci. Comput. 18, 1–22 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. Dormand, J.R., Prince, P.J.: A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 6, 19–26 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ramos, H.: Contributions to the development of differential systems exactly solved by multi step finite-difference schemes. Appl. Math. Comp. 217, 639–649 (2010)

    Article  MATH  Google Scholar 

  33. Alt, R.: A-stable one-step methods with step-size control for stiff systems of ordinary differential equations. J. Comp. Appl. Math 4(1) (1978)

  34. Malley, R.E.O’.: Singular Perturbation Methods for Ordinary Differential Equations. Springer, New York (1991)

    Google Scholar 

  35. Ashino, R., Nagase, M., Vaillancourt, R.: Behind and beyond the Matlab ODE suite. Comput. Math. Appl. 40, 491–512 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Kanwar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos, H., Singh, G., Kanwar, V. et al. An embedded 3(2) pair of nonlinear methods for solving first order initial-value ordinary differential systems. Numer Algor 75, 509–529 (2017). https://doi.org/10.1007/s11075-016-0209-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-016-0209-5

Keywords

Navigation