Skip to main content
Log in

On a nonlinear mean and its application to image compression using multiresolution schemes

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper is devoted to the compression of colour images using a new nonlinear cell-average multiresolution scheme. The aim is to obtain similar compression properties as linear multiresolution schemes but eliminating the classical Gibbs phenomenon of this type of reconstructions near the edges. The algorithm is based on a nonlinear reconstruction operator (using a nonlinear trigonometric mean). The new reconstruction is third-order accurate in smooth regions and adapted to the presence of discontinuities. The data used are always centred with optimal support. Some theoretical properties of this scheme are analysed (order of approximation, convergence, elimination of Gibbs effect and stability).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amat, S., Cherif, H., Trillo, J.C.: Denoising using Linear and nonlinear multiresolutions. Eng. Comput. 22(7), 877–891 (2005)

    Article  MATH  Google Scholar 

  2. Amat, S., Ruiz, J., Trillo, J.C.: Denoising using linear and nonlinear multiresolutions II: Cell-average framework and color images. Eng. Comput. 26(7), 806–827 (2009)

    Article  MATH  Google Scholar 

  3. Amat, S., Dadourian, K., Liandrat, J.: Analysis of a class of nonlinear subdivision schemes and associated multiresolution transforms. Adv. Comput. Math. 34(3), 253–277 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Amat, S., Dadourian, K., Liandrat, J.: On a nonlinear subdivision scheme avoiding Gibbs oscillations and converging towards C s functions with s > 1. Math. Comp. 80(274), 959–971 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Amat, S., Dadourian, K., Liandrat, J.: Analysis of a class of nonlinear subdivision schemes and associated multiresolution transforms. Adv. Comput. Math. 34(3), 253–277 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Amat, S., Donat, R., Liandrat, J., Trillo, J.C.: Analysis of a new nonlinear subdivision scheme. Applications in image processing. Found. Comput. Math. 6(2), 193–225 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Amat, S., Donat, R., Liandrat, J., Trillo, J.C.: A fully adaptive multiresolution scheme for image processing. Math. Comput. Modell 46(1–2), 2–11 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Amat, S., Liandrat, J.: On the stability of the PPH nonlinear multiresolution. Appl. Comp. Harm. Anal. 18(2), 198–206 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Amat, S., Liandrat, J., Ruiz, J., Trillo, J.C. S\(\vec {e}\)MA J. 60, 75–92 (2012)

    MathSciNet  Google Scholar 

  10. Aràndiga, F., Donat, R.: Nonlinear multi-scale decomposition: The approach of A.Harten. Numer. Algorithms 23, 175–216 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Binev, P., Dahmen, W., DeVore, R., Dyn, N.: Adaptive approximation of curves. Approximation theory: a volume dedicated to Borislav Bojanov, pp. 43–57. Prof. M. Drinov Acad Publ. House, Sofia (2004)

    Google Scholar 

  12. Chambolle, A., DeVore, R.A., Lee, N., Lucier, B.J.: Nonlinear wavelet image processing: variational problem, compression and noise removal through wavelet shrinkage. IEEE Trans. Image Process. 7, 319–335 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cohen, A.: Theoretical, Applied and Computational Aspects of Nonlinear approximation. (English Summary) Multiscale Problems and Methods in Numerical Simulations, vol. 1–29, Lecture Notes in Math, pp. 1825. Springer, Berlin (2003)

    Google Scholar 

  14. Cohen, A., DeVore, R., Petrushev, P., Xu, H.: Nonlinear approximation and the space BV(R 2). Amer. J. Math. 121(3), 587–628 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cohen, A., Dyn, N., Matei, B.: Quasi linear subdivision schemes with applications to ENO interpolation. Appl. Comput. Harmonic Anal. 15, 89–116 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Daubechies, I., Runborg, O., Sweldens, W.: Normal multiresolution approximation of curves. Const. Approx. 20(3), 399–463 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Donoho, D.L., Johnstone, I.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81, 425–455 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gottlieb, D., Shu, C.-W.: On the Gibbs phenomenon and its resolution. SIAM Rev. 39(4), 644–668 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Harten, A.: Multi resolution representation of data II. SIAM J. Numer. Anal. 33(3), 1205–1256 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Harten, A., Yad-Shalom, I.: Fast multiresolution algorithms for matrix-vector multiplications. SIAM J. Numer. Anal. 31, 1191–1218 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Matei, B.: Smoothness characterization and stability in nonlinear multiscale framework: theoretical results. Asymptot. Anal. 41(3–4), 277–309 (2005)

    MathSciNet  MATH  Google Scholar 

  22. Oswald, P.: Smoothness of nonlinear median-interpolation subdivision. Adv. Comput. Math. 20(4), 401–423 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rabbani, M., Jones, P.W.: Digital Image Compression Techniques. Tutorial Text, Society of Photo-Optical Instrumentation Engineers (SPIE), TT07 (1991)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ruiz.

Additional information

Research supported by MICINN-FEDER MTM2010-17508 (Spain) and by 08662/PI/08 (Murcia).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amat, S., Liandrat, J., Ruiz, J. et al. On a nonlinear mean and its application to image compression using multiresolution schemes. Numer Algor 71, 729–752 (2016). https://doi.org/10.1007/s11075-015-0019-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-015-0019-1

Keywords

Mathematics Subject Classifications (2010)

Navigation