Skip to main content
Log in

A numerical study of the Legendre-Galerkin method for the evaluation of the prolate spheroidal wave functions

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We conduct a numerical study of the Legendre-Galerkin method for the evaluation of the prolate spheroidal wave functions (PSWFs) viewed as the eigenfunctions of the prolate differential operator with boundary conditions of continuity. Our experiments indicate that the minimal dimension N of the Legendre-Galerkin matrix for the evaluation of the nth prolate with precision ε is \(\mathcal {O}( n + \sqrt {nc} ) \), as \(n, c \rightarrow \infty \), where c>0 is the bandwidth parameter. The behavior of N, when either c or n is held constant, is also examined. As a consequence, we obtain an upper bound on the complexity of the evaluation of the prolates. We also study the condition number of the approximate Legendre coefficients, computed as an eigenvector of the Legendre-Galerkin matrix. We observe experimentally that for fixed precision ε, an error estimate based on this condition number is \(\mathcal {O}( n + c ) \) as \(n, c \rightarrow \infty \). We conclude that the Legendre-Galerkin method is accurate for fairly large values of n and c.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions. Dover, New York (1965)

    Google Scholar 

  2. Barlow, J., Demmel, J.: Computing accurate eigensystems of scaled diagonally dominant matrices. SIAM J. Numer. Anal. 27(3), 762–791 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  3. Barrowes, B.: Multiple Precision Toolbox for MATLAB, Dec 2004. MATLAB Central File Exchange. Retrieved Jan 28, 2013. http://www.mathworks.com/matlabcentral/fileexchange/6446

  4. Beals, R., Wong, R.: Special Functions - A Graduate Text. Cambridge University Press (2010)

  5. Bouwkamp, C. J.: On spheroidal wave functions of order zero. J. Math. Phys. Mass. Inst. Tech. 26, 79–92 (1947)

    MATH  MathSciNet  Google Scholar 

  6. Boyd, J.P.: Chebyshev and Fourier Spectral Methods (2nd (revised) edition). Dover Publications, Inc. (2001)

  7. Boyd, J. P.: Prolate spheroidal wavefunctions as an alternative to Chebyshev and Legendre polynomials for spectral element and pseudospectral algorithms. J. Comput. Phys. 199(2), 688–716 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Boyd, J.P.: Algorithm 840: computation of grid points, quadrature weights and derivatives for spectral element methods using prolate spheroidal wave functions — prolate elements. ACM Trans. Math. Softw. 31(1), 149–165 (March 2005)

    Article  MATH  Google Scholar 

  9. Falloon, P. E., Abbott, P. C., Wang, J. B.: Theory and computation of spheroidal wavefunctions. J. Phys. A 36(20), 5477–5495 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Flammer, C.: Spheroidal wave functions. Stanford University Press, Stanford (1957)

    MATH  Google Scholar 

  11. Fuchs, W. H. J.: On the eigenvalues of an integral equation arising in the theory of band-limited signals. J. Math. Anal. Appl. 9, 317–330 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gu, M., Eisenstat, S. C.: A divide-and-conquer algorithm for the symmetric tridiagonal eigenproblem. SIAM J. Matrix Anal. Appl. 16(1), 172–191 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hodge, D. B.: Eigenvalues and eigenfunctions of the spheroidal wave equation. J. Math. Phys. 11, 2308–2312 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hrycak, T., Das, S., Matz, G.: Inverse methods for reconstruction of channel taps in OFDM systems. IEEE Trans. Signal Process. 60(5), 2666–2671 (2012)

    Article  MathSciNet  Google Scholar 

  15. Landau, H. J., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty. I. Bell Syst. Tech. J. 40, 65–84 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  16. Landau, H. J., H. O. Pollak: Prolate spheroidal wave functions, fourier analysis and uncertainty. III. The dimension of the space of essentially time- and band-limited signals. Bell Syst. Tech. J. 41, 1295–1336 (1962)

    Article  MATH  Google Scholar 

  17. Osipov, A.: Certain inequalities involving prolate spheroidal wave functions and associated quantities. Appl. Comput. Harmon. Anal. 35(3), 359–393 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  18. Osipov, A.: Certain upper bounds on the eigenvalues associated with prolate spheroidal wave functions. Appl. Comput. Harmon. Anal. 35(2), 309–340 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  19. Osipov, A., Rokhlin, V.: On the evaluation of prolate spheroidal wave functions and associated quadrature rules. Appl. Comput. Harmon. Anal. 36(1), 108–142 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  20. Osipov, A., Rokhlin, V., Xiao, H.: Prolate spheroidal wave functions of order zeroMathematical Tools for Bandlimited Approximation. Springer, Berlin (2013)

  21. Potts, D.: Fast algorithms for discrete polynomial transforms on arbitrary grids. Linear Algebra Appl. 366, 353–370 (2003). Special issue on structured matrices: analysis algorithms and applications (Cortona2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Saad, Y., Revised Edition: Numerical Methods for Large Eigenvalue Problems. SIAM (2011)

  23. Slepian, D.: Prolate spheroidal wave functions, Fourier analysis, uncertainity. IV. Extensions to many dimensions; generalized prolate spheroidal functions. Bell Syst. Tech. J. 43, 3009–3057 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  24. Slepian, D., Pollak, H.O.: Prolate spheroidal wave functions, fourier analysis and uncertainty. I.Bell Syst. Tech. J. 40, 43–63 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  25. Trefethen, L. N., Bau, D.: Numerical Linear Algebra. SIAM (June 1997)

  26. Widom, H.: Asymptotic behavior of the eigenvalues of certain integral equations. II. Arch. Ration. Mech. Anal. 17, 215–229 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  27. Xiao, H, Rokhlin, V, Yarvin, N: Prolate spheroidal wavefunctions, quadrature and interpolation. Inverse Probl. 17(4), 805–838 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Schmutzhard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmutzhard, S., Hrycak, T. & Feichtinger, H.G. A numerical study of the Legendre-Galerkin method for the evaluation of the prolate spheroidal wave functions. Numer Algor 68, 691–710 (2015). https://doi.org/10.1007/s11075-014-9867-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-014-9867-3

Keywords

Mathematics Subject Classifications (2010)

Navigation