Skip to main content
Log in

Space-time discretization of the heat equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

An algorithm for a stable parallelizable space-time Petrov-Galerkin discretization for linear parabolic evolution equations is given. Emphasis is on the reusability of spatial finite element codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akrivis, G., Makridakis, C., Nochetto, R.: Galerkin and Runge–Kutta methods: unified formulation, a posteriori error estimates and nodal superconvergence. Numer. Math. 118, 429–456 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alberty, J., Carstensen, C., Funken, S.A.: Remarks around 50 lines of Matlab: short finite element implementation. Numer. Algorithm. 20(2-3), 117–137 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Andreev, R.: Stability of space-time Petrov-Galerkin discretizations for parabolic evolution equations. Ph.D. thesis. ETH Zu¨rich, ETH Diss. No. 20842 (2012)

  4. Andreev, R.: Stability of sparse space-time finite element discretizations of linear parabolic evolution equations. IMA J. Numer. Anal. 33(1), 242–260 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  5. Andreev, R., Schweitzer, J.: Conditional space-time stability of collocation Runge–Kutta for parabolic evolution equations. Tech. Rep. 2013-15 (2013)

  6. Andreev, R., Tobler, C.: Multilevel preconditioning and low rank tensor iteration for space-time simultaneous discretizations of parabolic PDEs. Tech. Rep. ETH Zürich (2012)

    Google Scholar 

  7. Babuška, I., Janik, T.: The h-p version of the finite element method for parabolic equations. I. The p Version in Time. Numer. Methods Partial Differential Equations 5, 363–399 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  8. Babuška, I., Janik, T.: The h-p version of the finite element method for parabolic equations. II. The h-p Version in Time Numer. Methods Partial Differential Equations 6, 343–369 (1990)

    Article  MATH  Google Scholar 

  9. Banjai, L.: Parallel multistep methods for linear evolution problems. IMA J. Numer. Anal. 32(3), 1217–1240 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Benbow, S.J.: Solving generalized least-squares problems with LSQR. SIAM J. Matrix Anal. Appl. 21(1), 166–177 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chang, X.W., Paige, C.C., Titley-Peloquin, D.: Stopping criteria for the iterative solution of linear least squares problems. SIAM J. Matrix Anal. Appl. 31(2), 831–852 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics, vol. 19. J American Mathematical Society (1998)

  13. Fattorini, H.O.: Infinite dimensional linear control systems, North-Holland Mathematics Studies, vol. 201. Elsevier Science B.V., Amsterdam (2005)

    Google Scholar 

  14. Hulme, B.L.: One-step piecewise polynomial Galerkin methods for initial value problems. Math. Comp. 26, 415–426 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lions, J.L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, vol. I. Springer-Verlag, New York (1972)

    Book  MATH  Google Scholar 

  16. Paige, C.C., Saunders, M.A.: LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Software 8(1), 43–71 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  17. Schwab, C., Stevenson, R.: Space-time adaptive wavelet methods for parabolic evolution problems. Math. Comp. 78(267), 1293–1318 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Sheen, D., Sloan, I.H., Thom´ee, V.: A parallel method for time discretization of parabolic equations based on Laplace transformation and quadrature. IMA J. Numer. Anal 23(2), 269–299 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Xu, J., Zikatanov, L.: Some observations on Babuˇska and Brezzi theories. Numer. Math 94(1), 195–202 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Andreev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreev, R. Space-time discretization of the heat equation. Numer Algor 67, 713–731 (2014). https://doi.org/10.1007/s11075-013-9818-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-013-9818-4

Keywords

Navigation