Skip to main content
Log in

Stabilized finite element method for the viscoelastic Oldroyd fluid flows

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, a new stabilized finite element method based on two local Gauss integrations is considered for the two-dimensional viscoelastic fluid motion equations, arising from the Oldroyd model for the non-Newtonian fluid flows. This new stabilized method presents attractive features such as being parameter-free, or being defined for non-edge-based data structures. It confirms that the lowest equal-order P 1 − P 1 triangle element and Q 1 − Q 1 quadrilateral element are compatible. Moreover, the long time stabilities and error estimates for the velocity in H 1-norm and for the pressure in L 2-norm are obtained. Finally, some numerical experiments are performed, which show that the new method is applied to this model successfully and can save lots of computational cost compared with the standard ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.: Sobolev Spaces. Academic, New York (1975)

    MATH  Google Scholar 

  2. Agranovich, Y., Sobolevskii, P.: Motion of non-linear viscoelastic fluid. Nonlinear Anal. 32, 755–760 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Akhmatov, M., Oskolkov, A.: On convergence difference schemes for the equations of motion of an Oldroyd fluid. J. Sov. Math. 47, 2926–2933 (1989)

    Article  MathSciNet  Google Scholar 

  4. Baaijens, F.: Mixed finite element methods for viscoelastic flow analysis: a review. J. Non-Newton. Fluid Mech. 79, 361–385 (1998)

    Article  MATH  Google Scholar 

  5. Baranger, J., Sandri, D.: Finite element approximation of viscoelastic fluid flow: existence of approximate solutions and error bounds. I. Discontinuous constraints. Numer. Math. 63, 13–27 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bird, R., Armstrong, R., Hassager, O.: Dynamics of Polymeric Liquids, vol. 1. Fluid Mechanics. Wiley, New York (1997)

    Google Scholar 

  7. Bonito, A., Burman, E.: A continuous interior penalty method for viscoelastic flows. SIAM J. Sci. Comput. 30, 1156–1177 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cannon, J., Ewing, R., He, Y., Lin, Y.: A modified nonlinear Galerkin method for the viscoelastic fluid motion equations. Int. J. Eng. Sci. 37, 1643–1662 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ciarlet, P.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  10. Douglas, J., Wang, J.: An absolutely stabilized finite element method for the Stokes problem. Math. Comput. 52, 495–508 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ervin, V., Mikes, W.: Approximation of time-dependent viscoelastic fluid flow: SUPG approximation. SIAM J. Numer. Anal. 41, 457–486 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Giraut, V., Raviart, P.: Finite Element Approximation of the Navier–Stokes Equations. Springer, Berlin (1979)

    Book  Google Scholar 

  13. Goswami, D., Pani, A.: A priori error estimates for semidiscrete finite element approximations to equations of motion arising in Oldroyd fluids of order one. Int. J. Numer. Anal. Model. 8, 324–352 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Guenette, R., Fortin, M.: A new mixed finite method for computing viscoelastic flows. J. Non-Newton. Fluid Mech. 60, 27–52 (1995)

    Article  Google Scholar 

  15. He, Y., Li, J.: A stabilized finite element method based on local polynomial pressure projection for the stationary Navier–Stokes equations. Appl. Numer. Math. 58, 1503–1514 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. He, Y., Li, Y.: Asymptotic behavior of linearized viscoelastic flow problem. Discrete Continuous Dyn. Syst. Ser. B 10, 843–856 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. He, Y., Lin, Y., Sun, W.: Stabilized finite element method for the non-stationary Navier-Stokes problem. Discrete Continuous Dyn. Syst. Ser. B 6, 41–68 (2006)

    MathSciNet  MATH  Google Scholar 

  18. He, Y., Lin, Y., Sun, W., Shen, S., Tait, R.: Finite element approximation for the viscoelastic fluid motion problem. J. Comput. Appl. Math. 155, 201–222 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Heywood, J., Rannacher, R.: Finite-element approximation of the nonstationary Navier-Stokes problem part IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27, 353–384 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Heywood, J., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19, 275–311 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hughes, T., Franca, L.: A new finite element formulation for CFD. VII: the Stokes problem with various well-posed boundary conditions: symmetric formulations that converge for all velocity, pressure spaces. Comput. Methods Appl. Mech. Eng. 65, 85–97 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  22. Joseph, D.: Fluid Dynamics of Viscoelastic Liquids. Springer, New York (1990)

    MATH  Google Scholar 

  23. Lee, H.: A multigrid method for viscoelastic fluid flow. SIAM J. Numer. Anal. 42, 109–129 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, J., He, Y.: A stabilized finite element method based on two local Gauss integrations for the Stokes equations. J. Comput. Appl. Math. 214, 58–65 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, J., He, Y., Chen, Z.: A new stabilized finite element method for the transient Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 197, 22–35 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, J., Wang, J., Ye, X.: Superconvergence by L 2 −projections for stabilized finite element methods for the Stokes equations. Int. J. Numer. Anal. Model. 6, 711–723 (2009)

    MathSciNet  Google Scholar 

  27. Oldroyd, J.: On the formulation of the rheological equations of state. Proc. R. Soc. Lond. A Math. Phys. Sci. 200, 523–541 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pani, A., Yuan, J.: Semidiscrete finite element Galerkin approximation to the equations of motion arising in the Oldroyd model. IMA J. Numer. Anal. 25, 750–782 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pani, A., Yuan, J., Damazio, P.: On a linearized backward Euler method for the equations of motion of Oldroyd fluids of order one. SIAM J. Numer. Anal. 44, 804–825 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Silvester, D.: Optimal low-order finite element methods for incompressible flow. Comput. Methods Appl. Mech. Eng. 111, 357–368 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  31. Silvester, D., Kechkar, N.: Stabilized bilinear-constant velocity-pressure finite elements for the conjugate gradient solution of the Stokes problem. Comput. Methods Appl. Mech. Eng. 79, 71–87 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sobolevskii, P.: Stabilization of viscoelastic fluid motion (Oldroyd’s mathematical model). Differ. Integral Equ. 7, 1597–1612 (1994)

    MathSciNet  Google Scholar 

  33. Sun, H., He, Y., Feng, X.: On error estimates of the pressure-correction projection methods for the time-dependent Navier-Stokes equations. Int. J. Numer. Anal. Model. 8, 70–85 (2011)

    MathSciNet  MATH  Google Scholar 

  34. Temam, R.: Navier–Stokes Equations, Theory and Numerical Analysis. North-Holland, Amsterdam (1984)

    MATH  Google Scholar 

  35. Wang, K., Feng, M., He, Y.: Two-level stabilized finite element method for the transient Navier-Stokes equations. Int. J. Comput. Math. 87, 2341–2360 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, K., He, Y., Feng, X.: On error estimates of the penalty method for the viscoelastic flow problem I: time discretization. Appl. Math. Model. 34, 4089–4105 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, K., He, Y., Feng, X.: On error estimates of the fully discrete penalty method for the viscoelastic flow problem. Int. J. Comput. Math. 88, 2199–2220 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, K., He, Y., Shang, Y.: Fully discrete finite element method for the viscoelastic fluid motion equations. Discrete Continuous Dyn. Syst. Ser. B 13, 665–684 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, K., Lin, Y., He, Y.: Asymptotic analysis of the equations of motion for viscoelastic Oldroyd fluid. Discrete Continuous Dyn. Syst. 32, 657–677 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, K., Shang, Y., Wei, H.: A finite element penalty method for the linearized viscoelastic Oldroyd fluid motion equations. Comput. Math. Appl. 62, 1814–1827 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang, K., Shang, Y., Zhao, R.: Optimal error estimates of the penalty method for the linearized viscoelastic flows. Int. J. Comput. Math. 87, 3236–3253 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zheng, H., Shan, L., Hou, Y.: A quadratic equal-order stabilized method for Stokes problem based on two local Gauss integrations. Numer. Methods Partial Differ. Equ. 26, 1180–1190 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, K., Si, Z. & Yang, Y. Stabilized finite element method for the viscoelastic Oldroyd fluid flows. Numer Algor 60, 75–100 (2012). https://doi.org/10.1007/s11075-011-9512-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-011-9512-3

Keywords

Mathematics Subject Classifications (2010)

Navigation