Skip to main content
Log in

Discretized locally active memristor and application in logarithmic map

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Compared with continuous memristor, discrete memristor is more suitable for the application of memristor in discrete system. However, discrete memristor has not been fully appreciated. In this paper, a discrete memristor is obtained by discretizing continuous memristor based on the rectangular pulse discrete sampling method (RPDSM), and it satisfies the definition of generalized memristor by identifying fingerprint characteristics. The perfect matching of the v–i curves for appropriate sampling period further confirms the correctness of discretization result. Power-off plot and DC V–I plot are utilized to dissect the volatility and local activity of the memristor. Then, a new discrete memristive map, called DLAM-Log map for short, is constructed by coupling the discretized locally active memristor and logarithmic function. It shows that the DLAM-Log map can generate complex dynamics such as robust chaos, coexisting multiple attractors and some special transient dynamics. Finally, a practical modulation scheme of signal amplitude and functional type is proposed by introducing control function into the DLAM-Log map. The feasibility of the modulation scheme is theoretically interpreted and numerically validated, which shows potential significance in chaos-based information engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are included within the article.

References

  1. Xu, L., Qi, G., Ma, J.: Modeling of memristor-based Hindmarsh-Rose neuron and its dynamical analyses using energy method. Appl. Math. Model. 101, 503–516 (2022)

    MathSciNet  MATH  Google Scholar 

  2. Marković, D., Mizrahi, A., Querlioz, D., Grollier, J.: Physics for neuromorphic computing. Nat. Rev. Phys. 2, 1–12 (2020)

    Google Scholar 

  3. Zhou, C., Wang, C., Sun, Y., Yao, W., Lin, H.: Cluster output synchronization for memristive neural networks. Inform. Sci. 589, 459–477 (2022)

    Google Scholar 

  4. Guo, Y., Yao, Z., Xu, Y., Ma, J.: Control the stability in chaotic circuit coupled by memristor in different branch circuits. AEU Int. J. Electron. Commun. 145, 154074 (2022)

    Google Scholar 

  5. Majdabadi, M.M., Shamsi, J., Shokouhi, S.B.: Hybrid cmos/memristor crossbar structure for implementing Hopfield neural network. Analog Integr. Circ. S 107(2), 1–13 (2021)

    Google Scholar 

  6. Yao, P., Wu, H., Gao, B., Tang, J., Zhang, Q., Zhang, W., Yang, J.J., Qian, H.: Fully hardware-implemented memristor convolutional neural network. Nature 577, 641–646 (2020)

    Google Scholar 

  7. Hu, M., Li, H.H., Chen, Y., Wu, Q., Rose, G.S., Linderman, R.W.: Memristor crossbar-based neuromorphic computing system: a case study. IEEE Trans. Neural Netw. Lear. Syst. 25(10), 1864–1878 (2014)

    Google Scholar 

  8. Merolla, P., Arthur, J.V., Alvarez-Icaza, R., Cassidy, A.S., Sawada, J., Akopyan, F., Jackson, B.L., Esser, S.K., Appuswamy, R., Taba, B., Amir, A., Flickner, M.: A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345, 668 (2014)

    Google Scholar 

  9. Prezioso, M., Mahmoodi, M.R., Bayat, F.M., Nili, H., Kim, H., Vincent, A.F., Strukov, D.B.: Spike-timing-dependent plasticity learning of coincidence detection with passively integrated memristive circuits. Nat. Commun. 9, 5311 (2018)

    Google Scholar 

  10. Wang, Z., Joshi, S., Savel’ev, S.E., Song, W., Midya, R., Li, Y., Rao, M., Yan, P., Asapu, S., Zhuo, Y., Jiang, H., Lin, P., Li, C., Yoon, J.H., Upadhyay, N.K., Zhang, J., Hu, M., Strachan, J.P., Barnell, M.D., Wu, Q., Wu, H., Williams, R.S., Xia, Q., Yang, J.J.: Fully memristive neural networks for pattern classification with unsupervised learning. Nat. Electron. 1, 137–145 (2018)

    Google Scholar 

  11. Chua, L.O.: Memristor—the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971)

    Google Scholar 

  12. Strukov, D.B., Snider, G.S., Stewart, D.R.: The missing memristor found. Nature 453, 80–83 (2008)

    Google Scholar 

  13. Chew, Z.J., Li, L.: A discrete memristor made of ZnO nanowires synthesized on printed circuit board. Mater. Lett. 91, 298–300 (2013)

    Google Scholar 

  14. Du, C., Liu, L., Zhang, Z., Yu, S.: A memristive conservative chaotic circuit with two different offset boosting behaviors. AEU Int. J. Electron. Commun. 147, 154146 (2022)

    Google Scholar 

  15. Kengne, L.K., Pone, J., Fotsin, H.B.: Symmetry and asymmetry induced dynamics in a memristive twin-T circuit. Int. J. Electron. 109, 337–366 (2021)

    Google Scholar 

  16. Zhou, Y., Li, C., Li, W., Li, H., Feng, W., Qian, K.: Image encryption algorithm with circle index table scrambling and partition diffusion. Nonlinear Dyn 103, 2043–2061 (2021)

    Google Scholar 

  17. Chen, L., Li, C., Li, C.: Security measurement of a medical communication scheme based on chaos and DNA coding. J Vis Commun Image R. 83, 103424 (2022)

    Google Scholar 

  18. Li, C.L., Yang, Y.Y., Yang, X.B., Zi, X.Y., Xiao, F.L.: A tristable locally active memristor and its application in Hopfield neural network. Nonlinear Dyn. 108, 1697–1717 (2022)

    Google Scholar 

  19. Wang, X.Y., Dong, C.T., Zhou, P.F., Nandi, S.K., Nath, S.K., Elliman, R.G., Eshraghian, J.K.: Low-variance memristor-based multi-level ternary combinational logic. IEEE Trans. Circuits Syst. I (2022). https://doi.org/10.1109/TCSI.2022.3151920

    Article  Google Scholar 

  20. Taherinejad, N.: SIXOR: single-cycle in-memristor XOR. IEEE Trans. VLSI Syst. 29, 925–935 (2021)

    Google Scholar 

  21. Wang, X.Y., Jin, C., Eshraghian, J.K., Iu, H.H., Ha, C.: A behavioral SPICE model of a binarized memristor for digital logic implementation. Circ. Syst. Signal Pr. 40, 2682–2693 (2021)

    Google Scholar 

  22. Yuan, F., Li, Y.X.: Cascade discrete memristive maps for enhancing chaos. Chin. Phys. B 30(12), 7 (2021)

    Google Scholar 

  23. Peng, Y., He, S., Sun, K.: Chaos in the discrete memristor-based system with fractional-order difference. Results Phys. 24, 104106 (2021)

    Google Scholar 

  24. Natiq, H., Banerjee, S., Ariffin, M.R.K., Said, M.R.M.: Can hyperchaotic maps with high complexity produce multistability? Chaos 29, 011103 (2019)

    MathSciNet  MATH  Google Scholar 

  25. Liu, T., Mou, J., Xiong, L., Han, X., Yan, H., Cao, Y.: Hyperchaotic maps of a discrete memristor coupled to trigonometric function. Phys. Scripta 96, 125242 (2021)

    Google Scholar 

  26. Deng, Y., Li, Y.X.: Nonparametric bifurcation mechanism in 2-D hyperchaotic discrete memristor-based map. Nonlinear Dyn. 104, 4601–4614 (2021)

    Google Scholar 

  27. Bao, B.C., Li, H., Wu, H., Zhang, X., Chen, M.: Hyperchaos in a second-order discrete memristor-based map model. Electron. Lett. 56, 769–770 (2020)

    Google Scholar 

  28. Li, H., Hua, Z., Bao, H., Zhu, L., Chen, M., Bao, B.C.: Two-dimensional memristive hyperchaotic maps and application in secure communication. IEEE Trans. Ind. Electron. 68, 9931–9940 (2021)

    Google Scholar 

  29. Bao, H., Hua, Z., Li, H., Chen, M., Bao, B.C.: Memristor-based hyperchaotic maps and application in AC-GANs. IEEE. Trans. Ind. Inform. 1551–3203 (2021)

  30. Peng, Y., Sun, K.H., He, S.B.: A discrete memristor model and its application in Hénon map. Chaos Soliton. Fract. 137, 109873 (2020)

    MATH  Google Scholar 

  31. He, S.B., Sun, K.H., Peng, Y.X., Wang, L.: Modeling of discrete fracmemristor and its application. AIP Adv. 10, 015332 (2020)

    Google Scholar 

  32. Li, C.L., Li, H.D., Xie, W.W., Du, J.R.: A S-type bistable locally active memristor model and its analog implementation in an oscillator circuit. Nonlinear Dyn. 106(1), 1041–1058 (2021)

    Google Scholar 

  33. Guo, M., Zhu, Y., Liu, R., Zhao, K., Dou, G.: An associative memory circuit based on physical memristors. Neurocomputing 472, 12–23 (2022)

    Google Scholar 

  34. Chua, L.O.: Everything you wish to know about memristors but are afraid to ask. Radioengineering 24, 319–368 (2015)

    Google Scholar 

  35. Itoh, M., Chua, L.O.: Chaotic oscillation via edge of chaos criteria. Int. J. Bifurc. Chaos 27, 1730035 (2017)

    MathSciNet  MATH  Google Scholar 

  36. Mannan, Z.I., Choi, H., Kim, H.: Chua corsage memristor oscillator via Hopf bifurcation. Int. J. Bifurc. Chaos 26, 1630009 (2016)

    MathSciNet  MATH  Google Scholar 

  37. Liang, Y., Zhu, Q., Wang, G.Y., Nath, S.K., Iu, H.H., Nandi, S.K., Elliman, R.G.: Universal dynamics analysis of locally-active memristors and its applications. IEEE Trans. Circuits Syst. I(69), 1278–1290 (2022)

    Google Scholar 

  38. Kumar, S., Strachan, J.P., Williams, R.S.: Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing. Nature 548, 318–321 (2017)

    Google Scholar 

  39. Yi, W., Tsang, K.K., Lam, S.K., Bai, X., Crowell, J.A., Flores, E.A.: Biological plausibility and stochasticity in scalable VO2 active memristor neurons. Nat. Commun. (2018). https://doi.org/10.1038/s41467-018-07052-w

    Article  Google Scholar 

  40. Nath, S.K., Nandi, S.K., Li, S., Elliman, R.G.: Metal-oxide interface reactions and their effect on integrated resistive/threshold switching in NbOx. Nanotechnology 31, 124478 (2020)

    Google Scholar 

  41. Sharma, A.A., Li, Y., Skowronski, M., Bain, J.A., Weldon, J.A.: High-frequency TaOx-based compact oscillators. IEEE Trans. Electron Dev. 62, 3857–3862 (2015)

    Google Scholar 

  42. Kumar, S., Pickett, M.D., Strachan, J.P.: Local temperature redistribution and structural transition during joule-heating-driven conductance switching in VO2. Adv. Mater. 25(42), 6128–6132 (2013)

    Google Scholar 

  43. Li, C.B., Wang, J.X., Hu, W.: Absolute term introduced to rebuild the chaotic attractor with constant Lyapunov exponent spectrum. Nonlinear Dyn. 68, 575–587 (2012)

    MathSciNet  MATH  Google Scholar 

  44. Li, C.L., Su, K.L., Zhang, J.: Amplitude control and projective synchronization of a dynamical system with exponential nonlinearity. Appl. Math. Model. 39, 5392–5398 (2015)

    MathSciNet  MATH  Google Scholar 

  45. Wang, R., Li, C.B., Rajagopal, K., Zhang, X.: A memristive hyperjerk chaotic system: amplitude control, FPGA design, and prediction with artificial neural network. Complexity 1, 6636813 (2021)

    Google Scholar 

  46. Galias, Z.: Study of amplitude control and dynamical behaviors of a memristive band pass filter circuit. IEEE Trans. Circuits Syst. II 65, 637–641 (2018)

    Google Scholar 

  47. Zhang, X., Li, C.B., Dong, E., Zhao, Y.B., Liu, Z.H.: A conservative memristive system with amplitude control and offset boosting. Int. J. Bifurc. Chaos 32(4), 2250057 (2022)

    MathSciNet  MATH  Google Scholar 

  48. Peng, Y.X., He, S.B., Sun, K.H.: A higher dimensional chaotic map with discrete memristor. AEU Int. J. Electron. Commun. 129, 153539 (2020)

    Google Scholar 

  49. Li, C.L., Chen, Z., Yang, X.B., He, S.B., Yang, Y.Y., Du, J.R.: Self-reproducing dynamics in a two-dimensional discrete map. Eur. Phys. J. Spec. Top. 230(7), 1959–1970 (2021)

    Google Scholar 

  50. Kong, S., Li, C., Jiang, H., Lai, Q., Jiang, X.: A 2D hyperchaotic map with conditional symmetry and attractor growth. Chaos 31(4), 043121 (2021)

    MathSciNet  MATH  Google Scholar 

  51. Li, C.L., Qian, K., He, S.B., Li, H.M., Feng, W.: Dynamics and optimization control of a robust chaotic map. IEEE Access 7, 160072–160081 (2019)

    Google Scholar 

  52. Lai, Q., Lai, C.: Design and implementation of a new hyperchaotic memristive map. IEEE Trans. Circuits Syst. II 69, 2331–2335 (2022)

    Google Scholar 

  53. Kumarasamy, S., Srinivasan, A., Ramasamy, M., Rajagopal, K.: Strange nonchaotic dynamics in a discrete FitzHugh–Nagumo neuron model with sigmoidal recovery variable. Chaos 32(7), 073106 (2022)

    MathSciNet  Google Scholar 

  54. Rajagopal, K., Jafari, S., Karthikeyan, A., Srinivasan, A.: Hyperchaotic memcapacitor oscillator with infinite equilibria and coexisting attractors. Circ. Syst. Signal Pr. 37(7), 3702–3724 (2018)

    MathSciNet  MATH  Google Scholar 

  55. Ma, M., Yang, Y., Qiu, Z., Peng, Y., Sun, Y., Li, Z., Wang, M.: A locally active discrete memristor model and its application in a hyperchaotic map. Nonlinear Dyn 107, 2935–2949 (2022)

    Google Scholar 

  56. Kingston, S.L., Suresh, K., Thamilmaran, K., Kapitaniak, T.: Extreme and critical transition events in the memristor based Liénard system. Eur. Phys. J-Spec. Top. 229, 1033–1044 (2020)

    Google Scholar 

  57. Li, Z., Zhou, H., Wang, M., Ma, M.: Coexisting firing patterns and phase synchronization in locally active memristor coupled neurons with HR and FN models. Nonlinear Dyn. 104, 1455–1473 (2021)

    Google Scholar 

  58. Li, C.L., Li, H.M., Li, W., Tong, Y.N., Zhang, J., Wei, D.Q., Li, F.D.: Dynamics, implementation and stability of a chaotic system with coexistence of hyperbolic and non-hyperbolic equilibria. AEU Int. J. Electron. Commun. 84, 199–205 (2018)

    Google Scholar 

Download references

Funding

This work was supported by Hunan Provincial Natural Science Foundation of China (Nos. 2019JJ40109, 2020JJ4337); Science and Technology Program of Hunan Province (No. 2019TP1014); Science and Research Creative Team of Hunan Institute of Science and Technology (No. 2019-TD-10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunlai Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Li, C. & Du, J. Discretized locally active memristor and application in logarithmic map. Nonlinear Dyn 111, 2895–2915 (2023). https://doi.org/10.1007/s11071-022-07955-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07955-w

Keywords

Navigation