Skip to main content
Log in

A novel adaptive interval type-3 neuro-fuzzy robust controller for nonlinear complex dynamical systems with inherent uncertainties

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A novel observer-based control policy based on an interval type-3 fuzzy logic system is developed to tackle the main limitations of fuzzy-based controllers in sense of approximation of uncertainties and analyzing nonlinear complex systems without detailed dynamics model information. For this purpose, a novel scheme is proposed that includes online optimized tuning rules, a simple type reduction method, and adaptive mechanisms. Also, an adaptive compensator is implemented to enhance the robust performance of the closed-loop system and reduce the effect of approximation errors. For the stability analysis, appropriate Lyapunov functions and Barbalat’s lemma are employed. By both simulations and experimentally implementation, it is shown that the suggested approach results in a more accurate approximation of unknown models and complicated nonlinearities, and good resistance against uncertainties and parameter variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

There are no data associated with this paper.

Abbreviations

IT3FLS:

Interval type-3 fuzzy logic system

SM:

Sliding mode

TS:

Takagi-Sugeno

IT2FLS:

Interval type-2 fuzzy logic system

T1FLS:

Type-1 fuzzy logic system

T2F:

Type-2 fuzzy

PI:

Proportional–Integral

FS:

Fuzzy set

MPU6050:

Angle acceleration sensor

PCB:

Printed circuit board

GFSK:

Gaussian frequency shift keying

MF:

Membership function

References

  1. Liu, X., Yu, H.: Continuous adaptive integral-type sliding mode control based on disturbance observer for pmsm drives. Nonlinear Dyn. 104(2), 1429–1441 (2021)

    Article  Google Scholar 

  2. Li, T., Liu, X.: Non-cascade fast nonsingular terminal sliding mode control of permanent magnet synchronous motor based on disturbance observers. J. Electr. Eng. Technol. 17(2), 1061–1075 (2022)

    Article  Google Scholar 

  3. Fridman, L., Shtessel, Y., Edwards, C., Yan, X.-G.: Higher-order sliding-mode observer for state estimation and input reconstruction in nonlinear systems. Int. J. Robust Nonlinear Control 18(4–5), 399–412 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Efimov, D., Fridman, L., Raïssi, T., Zolghadri, A., Seydou, R.: Interval estimation for lpv systems applying high order sliding mode techniques. Automatica 48(9), 2365–2371 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Edwards, C., Shtessel, Y.B.: Adaptive continuous higher order sliding mode control. Automatica 65, 183–190 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Yang, J., Li, S., Su, J., Yu, X.: Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances. Automatica 49(7), 2287–2291 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. da Silva, C., Campos, V., Nguyen, A.-T., Martínez Palhares, R.: Adaptive gain-scheduling control for continuous-time systems with polytopic uncertainties: an lmi-based approach. Automatica 133, 109856 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  8. Taghieh, A., Shafiei, M.H.: Static output feedback control of switched nonlinear systems with time-varying delay and parametric uncertainties under asynchronous switching. Trans. Inst. Meas. Control. 43(5), 1156–1167 (2021)

    Article  Google Scholar 

  9. Li, D., Ge, S.S., Lee, T.H.: Simultaneous arrival to origin convergence: sliding-mode control through the norm-normalized sign function. IEEE Trans. Autom. Control 67(4), 1966–1972 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Su, H., Zhang, W.: Observer-based adaptive neural quantized control for nonlinear systems with asymmetric fuzzy dead zones and unknown control directions. Nonlinear Dyn. 1–14 (2022)

  11. Meng, Q., Ma, Q., Zhou, G.: Adaptive output feedback control for stochastic uncertain nonlinear time-delay systems. IEEE Trans. Circ. Syst. II Express Briefs

  12. Zhang, X., Huang, W.: Robust \({H_\infty }\) adaptive output feedback sliding mode control for interval type-2 fuzzy fractional-order systems with actuator faults. Nonlinear Dyn. 104(1), 537–550 (2021)

    Article  Google Scholar 

  13. Zhang, X., Jin, K.: State and output feedback controller design of takagi-sugeno fuzzy singular fractional order systems. Int. J. Control Autom. Syst. 19(6), 2260–2268 (2021)

    Article  Google Scholar 

  14. Zhao, T., Zou, X., Dian, S.: Fixed-time observer-based adaptive fuzzy tracking control for mecanum-wheel mobile robots with guaranteed transient performance. Nonlinear Dyn. 107(1), 921–937 (2022)

    Article  Google Scholar 

  15. Guo, B., Dian, S., Zhao, T.: Event-driven-observer-based fuzzy fault-tolerant control for nonlinear system with actuator fault. Nonlinear Dyn. 1–15 (2022)

  16. Yan, S., Gu, Z., Park, J.H., Xie, X.: Adaptive memory-event-triggered static output control of TS fuzzy wind turbine systems. IEEE Trans. Fuzzy Syst

  17. Yan, S., Shen, M., Nguang, S.K., Zhang, G., Zhang, L.: A distributed delay method for event-triggered control of T-S fuzzy networked systems with transmission delay. IEEE Trans. Fuzzy Syst. 27(10), 1963–1973 (2019)

    Article  Google Scholar 

  18. Hao, R.-B., Lu, Z.-Q., Ding, H., Chen, L.-Q.: A nonlinear vibration isolator supported on a flexible plate: analysis and experiment. Nonlinear Dyn. 108(2), 941–958 (2022)

    Article  Google Scholar 

  19. Zhang, Z., Niu, Y.: Sliding mode control of interval type-2 ts fuzzy systems with redundant channels. Nonlinear Dyn. 1–15 (2022)

  20. Mohammadzadeh, A., Kaynak, O., Teshnehlab, M.: Two-mode indirect adaptive control approach for the synchronization of uncertain chaotic systems by the use of a hierarchical interval type-2 fuzzy neural network. IEEE Trans. Fuzzy Syst. 22(5), 1301–1312 (2014)

    Article  Google Scholar 

  21. Castillo, O., Melin, P.: A review on the design and optimization of interval type-2 fuzzy controllers. Appl. Soft Comput. 12(4), 1267–1278 (2012)

    Article  Google Scholar 

  22. Castillo, O., Amador-Angulo, L.: A generalized type-2 fuzzy logic approach for dynamic parameter adaptation in bee colony optimization applied to fuzzy controller design. Inf. Sci. 460–461, 476–496 (2018)

    Article  Google Scholar 

  23. Khooban, M.H., Vafamand, N., Liaghat, A., Dragicevic, T.: An optimal general type-2 fuzzy controller for urban traffic network. ISA Trans. 66, 335–343 (2017)

    Article  Google Scholar 

  24. Mohammadzadeh, A., Ghaemi, S., Kaynak, O., Khanmohammadi, S.: Robust \({H_\infty }\)-based synchronization of the fractional-order chaotic systems by using new self-evolving nonsingleton type-2 fuzzy neural networks. IEEE Trans. Fuzzy Syst. 24(6), 1544–1554 (2016)

    Article  Google Scholar 

  25. Kumbasar, T., Hagras, H.: A self-tuning zslices-based general type-2 fuzzy pi controller. IEEE Trans. Fuzzy Syst. 23(4), 991–1013 (2015)

    Article  Google Scholar 

  26. Yang, Y., Niu, Y., Reza Karimi, H.: Dynamic learning control design for interval type-2 fuzzy singularly perturbed systems: a component-based event-triggering protocol. Int. J. Robust Nonlinear Control 32(5), 2518–2535 (2022)

    Article  MathSciNet  Google Scholar 

  27. Yang, Y., Niu, Y., Li, J.: Local-boundary-information-dependent control design for interval type-2 fuzzy systems under self-triggered scheme. Inf. Sci. 596, 137–152 (2022)

    Article  Google Scholar 

  28. Mohammadzadeh, A., Kumbasar, T.: A new fractional-order general type-2 fuzzy predictive control system and its application for glucose level regulation. Appl. Soft Comput. 91, 106241 (2020)

    Article  Google Scholar 

  29. Amirkhani, A., Shirzadeh, M., Kumbasar, T., Mashadi, B.: A framework for designing cognitive trajectory controllers using genetically evolved interval type-2 fuzzy cognitive maps. Int. J. Intell. Syst. 37(1), 305–335 (2022)

    Article  Google Scholar 

  30. Li, H., Wu, C., Wu, L., Lam, H.-K., Gao, Y.: Filtering of interval type-2 fuzzy systems with intermittent measurements. IEEE Trans. Cybern. 46(3), 668–678 (2016)

    Article  Google Scholar 

  31. Sabzalian, M.H., Mohammadzadeh, A., Rathinasamy, S., Zhang, W.: A developed observer-based type-2 fuzzy control for chaotic systems. Int. J. Syst. Sci. 1–20 (2021)

  32. Mohammadzadeh, A., Sabzalian, M.H., Ahmadian, A., Nabipour, N.: A dynamic general type-2 fuzzy system with optimized secondary membership for online frequency regulation. ISA Trans. 112, 150–160 (2021)

    Article  Google Scholar 

  33. Mohammadzadeh, A., Kaynak, O.: A novel general type-2 fuzzy controller for fractional-order multi-agent systems under unknown time-varying topology. J. Franklin Inst. 356(10), 5151–5171 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Moghadam, H.M., Mohammadzadeh, A., Vafaie, R.H., Tavoosi, J., Khooban, M.-H.: A type-2 fuzzy control for active/reactive power control and energy storage management. Trans. Inst. Meas. Control. 44(5), 1014–1028 (2022)

    Article  Google Scholar 

  35. Mohammadzadeh, A., Kaynak, O.: A novel fractional-order fuzzy control method based on immersion and invariance approach. Appl. Soft Comput. 88, 106043 (2020)

    Article  Google Scholar 

  36. Mohammadzadeh, A., Sabzalian, M.H., Zhang, W.: An interval type-3 fuzzy system and a new online fractional-order learning algorithm: theory and practice. IEEE Trans. Fuzzy Syst. 28(9), 1940–1950 (2020)

    Article  Google Scholar 

  37. Mohammadzadeh, A., Vafaie, R.H.: A deep learned fuzzy control for inertial sensing: micro electro mechanical systems. Appl. Soft Comput. 109, 107597 (2021)

    Article  Google Scholar 

  38. Gheisarnejad, M., Mohammadzadeh, A., Farsizadeh, H., Khooban, M.-H.: Stabilization of 5g telecom converter-based deep type-3 fuzzy machine learning control for telecom applications. IEEE Trans. Circ. Syst. II Express Briefs 1–1 (2021)

  39. Qasem, S.N., Ahmadian, A., Mohammadzadeh, A., Rathinasamy, S., Pahlevanzadeh, B.: A type-3 logic fuzzy system: optimized by a correntropy based kalman filter with adaptive fuzzy kernel size. Inf. Sci. 572, 424–443 (2021)

    Article  MathSciNet  Google Scholar 

  40. Boulkroune, A., M’saad, M.: On the design of observer-based fuzzy adaptive controller for nonlinear systems with unknown control gain sign. Fuzzy Sets Syst. 201, 71–85 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lin, T.-C., Wang, C.-H., Liu, H.-L.: Observer-based indirect adaptive fuzzy-neural tracking control for nonlinear siso systems using vss and h-infinity approaches. Fuzzy Sets Syst. 143(2), 211–232 (2004)

    Article  MATH  Google Scholar 

  42. Rovithakis, G.A., Christodoulou, M.A.: Direct adaptive regulation of unknown nonlinear dynamical systems via dynamic neural networks. Syst. Man Cybern. IEEE Trans. 25(12), 1578–1594 (1995)

    Article  Google Scholar 

  43. Qasem, S.N., Ahmadian, A., Mohammadzadeh, A., Rathinasamy, S., Pahlevanzadeh, B.: A type-3 logic fuzzy system: optimized by a correntropy based kalman filter with adaptive fuzzy kernel size. Inf. Sci. 572, 424–443 (2021)

    Article  MathSciNet  Google Scholar 

  44. Krikochoritis, T., Tzafestas, S.: Control of flexible joint robots using neural networks. IMA J. Math. Control. Inf. 18(2), 269–280 (2001)

  45. Meng, Q., Lai, X., Yan, Z., Su, C.-Y., Wu, M.: Motion planning and adaptive neural tracking control of an uncertain two-link rigid-flexible manipulator with vibration amplitude constraint. IEEE Trans. Neural Netw. Learn. Syst

  46. Hung, L.-C., Chung, H.-Y., Chung-Li, T.-Y.: Hybrid neural sliding mode controller design for a robotic manipulator. J. Grey Syst. 17(2), 183–200 (2005)

    Google Scholar 

  47. Liu, Y.-J., Wang, W., Tong, S.-C., Liu, Y.-S.: Robust adaptive tracking control for nonlinear systems based on bounds of fuzzy approximation parameters. Syst. Man Cybern. Part A Syst. Hum. IEEE Trans. 40(1), 170–184 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This research is financially supported by the Ministry of Science and Technology of China (Grant No. 2019YFE0112400) and the Department of Science and Technology of Shandong Province (Grant No. 2021CXGC011204).

Funding

This research is financially supported by the Ministry of Science and Technology of China (Grant No.2019YFE0112400) and the Department of Science and Technology of Shandong Province (Grant No. 2021CXGC011204).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ardashir Mohammadzadeh or Chunwei Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taghieh, A., Mohammadzadeh, A., Zhang, C. et al. A novel adaptive interval type-3 neuro-fuzzy robust controller for nonlinear complex dynamical systems with inherent uncertainties. Nonlinear Dyn 111, 411–425 (2023). https://doi.org/10.1007/s11071-022-07867-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07867-9

Keywords

Navigation