Skip to main content
Log in

Self-bound states induced by the Lee–Huang–Yang effect in non-\(\mathcal{PT}\mathcal{}\)-symmetric complex potentials

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We numerically investigate the existence and stability of self-bound states forming in a one-dimensional binary bosonic condensate confined in non-parity-time (\(\mathcal{PT}\mathcal{}\))-symmetric complex potentials under the influence of the Lee–Huang–Yang (LHY) correction. The linear spectrum of the non-\(\mathcal{PT}\mathcal{}\)-symmetric complex potentials may undergo phase transition where the eigenspectrum changes from partially complex to all real through the adjustment of the phase transition parameter. Below the phase transition, it is shown that the fundamental and dipole self-bound states can exist in different regions bifurcating from different discrete eigenvalues in the linear spectrum. The fundamental and dipole self-bound states are completely stable for the general case (i.e., \(\sigma =1\), with \(\sigma \) being the relative strength of the cubic self-interaction between atoms with respect to the quadratic LHY correction). Above the phase transition, the self-bound states are not stable for \(\sigma =1\) regardless of the value of the condensate norm. However, the fundamental self-bound states in the large condensate are able to become stable by decreasing \(\sigma \) to relatively small values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statements

All data generated or analyzed during this study are included in this published article.

References

  1. Konotop, V.V., Yang, J., Zezyulin, D.A.: Nonlinear waves in \(\cal{PT} \)-symmetric systems. Rev. Mod. Phys. 88, 035002 (2016)

    Google Scholar 

  2. Bender, C.M.: PT Symmetry. World Scientific, Singapore (2019)

    Google Scholar 

  3. Christodoulides, D., Yang, J.: Parity-Time Symmetry and Its Applications. Springer, Berlin (2018)

    Google Scholar 

  4. Moiseyev, N.: Non-Hermitian Quantum Mechanics. Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

  5. El-Ganainy, R., Makris, K.G., Khajavikhan, M., Musslimani, Z.H., Rotter, S., Christodoulides, D.N.: Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11 (2018)

    Google Scholar 

  6. Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian Hamiltonians having \(\cal{PT} \) symmetry. Phys. Rev. Lett. 80, 5243 (1998)

    MathSciNet  MATH  Google Scholar 

  7. Bender, C.M.: Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947 (2007)

    MathSciNet  Google Scholar 

  8. Xie, J., Zhu, X., He, Y.: Vector solitons in nonlinear fractional Schrödinger equations with parity-time-symmetric optical lattices. Nonlinear Dyn. 97, 1287–1294 (2019)

    MATH  Google Scholar 

  9. Zeng, L., Shi, J., Lu, X., Cai, Y., Zhu, Q., Chen, H., Long, H., Li, J.: Stable and oscillating solitons of PT-symmetric couplers with gain and loss in fractional dimension. Nonlinear Dyn. 103, 1831–1840 (2021)

    Google Scholar 

  10. Longhi, S.: Quantum-optical analogies using photonic structures. Laser Photon. Rev. 3, 243 (2008)

    Google Scholar 

  11. Driben, R., Malomed, B.A.: Stability of solitons in parity-time-symmetric couplers. Opt. Lett. 36, 4323 (2011)

    Google Scholar 

  12. Peng, B., Ozdemir, S.K., Lei, F., Monifi, F., Gianfreda, M., Long, G., Fan, S., Nori, F., Bender, C.M., Yang, L.: Parity-time-symmetric whispering-gallery microcavities. Nat. Phys. 10, 394 (2014)

    Google Scholar 

  13. Rüter, C.E., Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Segev, M., Kip, D.: Observation of parity-time symmetry in optics. Nat. Phys. 6, 192 (2010)

    Google Scholar 

  14. Guo, A., Salamo, G.J., Duchesne, D., Morandotti, R., Volatier-Ravat, M., Aimez, V., Siviloglou, G.A., Christodoulides, D.N.: Observation of \(\cal{PT} \)-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009)

    Google Scholar 

  15. Regensburger, A., Bersch, C., Miri, M., Onishchukov, G., Christodoulides, D.N., Peschel, U.: Parity-time synthetic photonic lattices. Nature 488, 167 (2012)

    Google Scholar 

  16. Kreibich, M., Main, J., Cartarius, H., Wunner, G.: Realizing \(\cal{PT} \)-symmetric non-Hermiticity with ultracold atoms and Hermitian multiwell potentials. Phys. Rev. A 90, 033630 (2014)

    Google Scholar 

  17. Fortanier, R., Dast, D., Haag, D., Cartarius, H., Main, J., Wunner, G., Gutöhrlein, R.: Dipolar Bose–Einstein condensates in a \(\cal{PT} \)-symmetric double-well potential. Phys. Rev. A 89, 063608 (2014)

    Google Scholar 

  18. Dast, D., Haag, D., Cartarius, H., Main, J., Wunner, G.: Bose–Einstein condensates with balanced gain and loss beyond mean-field theory. Phys. Rev. A 94, 053601 (2016)

    Google Scholar 

  19. Haag, D., Dast, D., Cartarius, H., Wunner, G.: \(\cal{PT} \)-symmetric gain and loss in a rotating Bose–Einstein condensate. Phys. Rev. A 97, 033607 (2018)

    Google Scholar 

  20. Li, J., Harter, A.K., Liu, J., de Melo, L., Joglekar, Y.N., Luo, L.: Observation of parity-time symmetry breaking transitions in a dissipative Floquet system of ultracold atoms. Nat. Commun. 10, 855 (2019)

    Google Scholar 

  21. Zhou, Z., Wang, Z., Zhong, H., Luo, Y., Chen, H., Tan, J.: Photon-assisted \(\cal{PT} \) symmetry and stability of two strongly interacting bosons in a non-Hermitian driven double well. Phys. Lett. A 384, 126197 (2020)

    Google Scholar 

  22. Cui, X.: Quantum fluctuations on top of a \(\cal{PT} \)-symmetric Bose–Einstein condensate. Phys. Rev. Res. 4, 013047 (2022)

    Google Scholar 

  23. Cannata, F., Junker, G., Trost, J.: Schrödinger operators with complex potential but real spectrum. Phys. Lett. A 246, 219 (1998)

    MathSciNet  MATH  Google Scholar 

  24. Miri, M.-A., Heinrich, M., Christodoulides, D.N.: Supersymmetry-generated complex optical potentials with real spectra. Phys. Rev. A 87, 043819 (2013)

    Google Scholar 

  25. Nixon, S., Yang, J.: All-real spectra in optical systems with arbitrary gain-and-loss distributions. Phys. Rev. A 93, 031802(R) (2016)

    Google Scholar 

  26. Tsoy, E.N., Allayarov, I.M., Abdullaev, F.K.: Stable localized modes in asymmetric waveguides with gain and loss. Opt. Lett. 39, 4215 (2014)

    Google Scholar 

  27. Konotop, V.V., Zezyulin, D.A.: Families of stationary modes in complex potentials. Opt. Lett. 39, 5535 (2014)

    Google Scholar 

  28. Yang, J., Nixon, S.D.: Stability of soliton families in nonlinear Schrödinger equations with non-parity-time-symmetric complex potentials. Phys. Lett. A 380, 3803 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Zhu, X., He, Y.: Vector solitons in nonparity-time-symmetric complex potentials. Opt. Express 26, 26511 (2018)

    Google Scholar 

  30. Zhu, X., Peng, X., Qiu, Y., Wang, H., He, Y.: Nonlocal solitons supported by non-parity-time-symmetric complex potentials. New J. Phys. 22, 033035 (2020)

    MathSciNet  Google Scholar 

  31. Zhu, X., Liao, S., Cai, Z., Qiu, Y., He, Y.: Solitons in Kerr media with two-dimensional non-parity-time-symmetric complex potentials. Chaos Solitons Fractals 146, 110837 (2021)

    MathSciNet  MATH  Google Scholar 

  32. Zhu, X., Cai, Z., Liu, J., Liao, S., He, Y.: Spatial solitons in non-parity-time-symmetric complex potentials with competing cubic-quintic nonlinearities. Nonlinear Dyn. 108, 2563–2572 (2022)

    Google Scholar 

  33. Nixon, S.D., Yang, J.: Bifurcation of soliton families from linear modes in non-\(\cal{PT} \)-symmetric complex potentials. Stud. Appl. Math. 136, 459 (2016)

    MathSciNet  MATH  Google Scholar 

  34. Hang, C., Gabadadze, G., Huang, G.: Realization of non-\(\cal{PT} \)-symmetric optical potentials with all-real spectra in a coherent atomic system. Phys. Rev. A 95, 023833 (2017)

    Google Scholar 

  35. Schmitt, M., Wenzel, M., Böttcher, F., Ferrier-Barbut, I., Pfau, T.: Self-bound droplets of a dilute magnetic quantum liquid. Nature 539, 259 (2016)

    Google Scholar 

  36. Chomaz, L., Baier, S., Petter, D., Mark, M.J., Wächtler, F., Santos, L., Ferlaino, F.: Quantum-fluctuation-driven crossover from a dilute Bose–Einstein condensate to a macrodroplet in a dipolar quantum fluid. Phys. Rev. X 6, 041039 (2016)

    Google Scholar 

  37. Cabrera, C.R., Tanzi, L., Sanz, J., Naylor, B., Thomas, P., Cheiney, P., Tarruell, L.: Quantum liquid droplets in a mixture of Bose–Einstein condensates. Science 359, 301 (2018)

    MathSciNet  Google Scholar 

  38. Semeghini, G., Ferioli, G., Masi, L., Mazzinghi, C., Wolswijk, L., Minardi, F., Modugno, M., Modugno, G., Inguscio, M., Fattori, M.: Self-bound quantum droplets of atomic mixtures in free space. Phys. Rev. Lett. 120, 235301 (2018)

    Google Scholar 

  39. Lee, T.D., Huang, K., Yang, C.N.: Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties. Phys. Rev. 106, 1135 (1957)

    MathSciNet  MATH  Google Scholar 

  40. Li, Y., Luo, Z., Liu, Y., Chen, Z., Huang, C., Fu, S., Tan, H., Malomed, B.A.: Two-dimensional solitons and quantum droplets supported by competing self- and cross-interactions in spin-orbit-coupled condensates. New J. Phys. 19, 113043 (2017)

    Google Scholar 

  41. Astrakharchik, G.E., Malomed, B.A.: Dynamics of one-dimensional quantum droplets. Phys. Rev. A 98, 013631 (2018)

    Google Scholar 

  42. Li, Y., Chen, Z., Luo, Z., Huang, C., Tan, H., Pang, W., Malomed, B.A.: Two-dimensional vortex quantum droplets. Phys. Rev. A 98, 063602 (2018)

    Google Scholar 

  43. Zhou, Z., Yu, X., Zou, Y., Zhong, H.: Dynamics of quantum droplets in a one-dimensional optical lattice. Commun. Nonlinear. Sci. Numer. Simul. 78, 104881 (2019)

    MathSciNet  MATH  Google Scholar 

  44. Liu, B., Zhang, H., Zhong, R., Zhang, X., Qin, X., Huang, C., Li, Y., Malomed, B.A.: Symmetry breaking of quantum droplets in a dual-core trap. Phys. Rev. A 99, 053602 (2019)

    Google Scholar 

  45. Zhang, X., Xu, X., Zheng, Y., Chen, Z., Liu, B., Huang, C., Malomed, B.A., Li, Y.: Semidiscrete quantum droplets and vortices. Phys. Rev. Lett. 123, 133901 (2019)

    Google Scholar 

  46. Dong, L., Qi, W., Peng, P., Wang, L., Zhou, H., Huang, C.: Multi-stable quantum droplets in optical lattices. Nonlinear Dyn. 102, 303–310 (2020)

    Google Scholar 

  47. Lin, Z., Xu, X., Chen, Z., Yan, Z., Mai, Z., Liu, B.: Two-dimensional vortex quantum droplets get thick. Commun. Nonlinear. Sci. Numer. Simul. 93, 105536 (2021)

    MathSciNet  MATH  Google Scholar 

  48. Luo, Z., Pang, W., Liu, B., Li, Y., Malomed, B.A.: A new form of liquid matter: quantum droplets. Front. Phys. 16, 32201 (2021)

    Google Scholar 

  49. Malomed, B.A.: The family of quantum droplets keeps expanding. Front. Phys. 16, 22504 (2021)

    Google Scholar 

  50. Xu, X., Ou, G., Chen, Z., Liu, B., Chen, W., Malomed, B.A., Li, Y.: Semidiscrete vortex solitons. Adv. Photonics Res. 2000082 (2021)

  51. Zhao, F., Yan, Z., Cai, X., Li, C., Chen, G., He, H., Liu, B., Li, Y.: Discrete quantum droplets in one-dimensional optical lattices. Chaos Solitons Fractals 152, 111313 (2021)

    MathSciNet  MATH  Google Scholar 

  52. Politi, C., Trautmann, A., Ilzhöfer, P., Durastante, G., Mark, M.J., Modugno, M., Ferlaino, F.: Interspecies interactions in an ultracold dipolar mixture. Phys. Rev. A 105, 023304 (2022)

    Google Scholar 

  53. Zhou, Z., Zhu, B., Wang, H., Zhong, H.: Stability and collisions of quantum droplets in \(\cal{PT} \)-symmetric dual-core couplers. Commun. Nonlinear. Sci. Numer. Simul. 91, 105424 (2020)

    MathSciNet  MATH  Google Scholar 

  54. Lao, J., Zhou, Z., Zhang, X., Ye, F., Zhong, H.: Oscillatory stability of quantum droplets in \(\cal{PT} \)-symmetric optical lattice. Commun. Theor. Phys. 73, 065103 (2021)

    Google Scholar 

  55. D’Errico, C., Burchianti, A., Prevedelli, M., Salasnich, L., Ancilotto, F., Modugno, M., Minardi, F., Fort, C.: Observation of quantum droplets in a heteronuclear bosonic mixture. Phys. Rev. Res. 1, 033155 (2019)

    Google Scholar 

  56. Zhou, Z., Shi, Y., Tang, S., Deng, H., Wang, H., He, X., Zhong, H.: Controllable dissipative quantum droplets in one-dimensional optical lattices. Chaos Solitons Fractals 150, 111193 (2021)

  57. Lysebo, M., Veseth, L.: Feshbach resonances and transition rates for cold homonuclear collisions between \(^{39}K\) and \(^{41}K\) atoms. Phys. Rev. A 81, 032702 (2010)

    Google Scholar 

  58. Staudinger, C., Mazzanti, F., Zillich, R.E.: Self-bound Bose mixtures. Phys. Rev. A 98, 023633 (2018)

  59. Chen, X., Deng, Z., Xu, X., Li, S., Fan, Z., Chen, Z., Liu, B., Li, Y.: Nonlinear modes in spatially confined spin-orbit-coupled Bose–Einstein condensates with repulsive nonlinearity. Nonlinear Dyn. 101, 569–579 (2020)

    Google Scholar 

  60. Yang, J., Lakoba, T.I.: Universally-convergent squared-operator iteration methods for solitary waves in general nonlinear wave equations. Stud. Appl. Math. 118, 153 (2007)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant Nos. 12175315 and 12165008. The Scientific Research Fund of Hunan Provincial Education Department of China under Grant Nos. 20B162, 20A136, and 19A069. The Hunan Provincial Natural Science Foundation under Grant Nos. 2019JJ40060 and 2019JJ30044. The Undergraduate Innovation and Entrepreneurship Training Program of Hunan province under Grant No. S202211528077.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Shi, Y., Ye, F. et al. Self-bound states induced by the Lee–Huang–Yang effect in non-\(\mathcal{PT}\mathcal{}\)-symmetric complex potentials. Nonlinear Dyn 110, 3769–3778 (2022). https://doi.org/10.1007/s11071-022-07797-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07797-6

Keywords

Navigation