Skip to main content
Log in

Quasiperiodic and chaotic behaviours in time evolution of pulsar spin

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this article, dynamical behaviour of pulsar spin-down is analysed with the presence of time-dependent external torques. The model incorporates nonlinear superfluidity of the core of pulsar. The spin-down rate of the crust becomes perturbed whenever a glitch occurs. An abrupt increase appears in the pulsar spin-down rate for a short period of time. Although there are several mechanisms proposed to understand those glitches, the exact mechanism is still unknown. The fluctuations in pulsar spin-down cannot be predicted either from time series analysis or governing equations for rotational dynamics. Long-term irregularities in pulsar spin-down give clues about some spiking activity or intermittency in the governing dynamics, which immediately enforce one to think about chaotic dynamics that may this trigger glitch behaviour. With this motivation behind, we modified an existing model known as vortex creep model to figure out the stochasticity in the dynamics of the system. The new model exhibits very interesting dynamical features. First of all, it is able to demonstrate glitch-like behaviour for suitable parameters. With the applied modification in the equations of motion, the system is showing different dynamical regimes from periodicity to quasiperiodicity and also chaotic dynamics become obvious for special parameter settings. The rich dynamical feature of the system is shown with the aid of nonlinear tools such as phase portraits, bifurcation diagrams, Lyapunov exponents and Poincaré sections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Data sharing not applicable to this article.

References

  1. Casini, H., Montemayor, R.: Crust-core interactions and the magnetic dipole orientation in neutron stars. Astrophys. J. 503, 374 (1998)

    Article  Google Scholar 

  2. Melatos, A.: Radiative precession of an isolated neutron star. Mon. Not. R. Astron. Soc. 313, 217–228 (2000)

    Article  Google Scholar 

  3. Sidery, T., Passamonti, A., Andersson, N.: The dynamics of pulsar glitches: contrasting phenomenology with numerical evolutions. Mon. Not. R. Astron. Soc. 405, 1061–1074 (2010)

    Google Scholar 

  4. Haskell, B., Melatos, A.: Models of pulsar glitches. Int. J. Mod. Phys. D 24, 1530008 (2015)

    Article  MathSciNet  Google Scholar 

  5. Baym, G., Pethick, C., Pines, D.: Superfluidity in neutron stars. Nature 224, 673–674 (1969)

    Article  Google Scholar 

  6. Anderson, P.W., Itoh, N.: Pulsar glitches and restlessness as a hard superfluidity phenomenon. Nature 256, 25–27 (1975)

    Article  Google Scholar 

  7. Alpar, M.A., Pines, D., Anderson, P.W., Shaham, J.: Vortex creep and the internal temperature of neutron stars. I-General theory. Astrophys. J. 276, 325–334 (1984)

    Article  Google Scholar 

  8. Monteforte, M., Wolf, F.: Dynamical entropy production in spiking neuron networks in the balanced state. Phys. Rev. Lett. 105, 268104 (2010)

    Article  Google Scholar 

  9. Gu, H.G., Chen, S.G., Li, Y.Y.: Complex transitions between spike, burst or chaos synchronization states in coupled neurons with coexisting bursting patterns. Chin. Phys. B 24, 050505 (2015)

    Article  Google Scholar 

  10. Seymour, A.D., Lorimer, D.R.: Evidence for chaotic behaviour in pulsar spin-down rates. Mon. Not. R. Astron. Soc. 428, 983–998 (2013)

    Article  Google Scholar 

  11. Harding, A.K., Shinbrot, T., Cordes, J.M.: A chaotic attractor in timing noise from the Vela pulsar? Astrophys. J. 353, 588–596 (1990)

    Article  Google Scholar 

  12. DeLaney, T., Weatherall, J.C.: Model for deterministic chaos in pulsar radio signals and search for attractors in the Crab and Vela pulsars. Astrophys. J. 519, 291 (1999)

    Article  Google Scholar 

  13. Alpar, M.A., Cheng, K.S., Pines, D.: Vortex creep and the internal temperature of neutron stars-Linear and nonlinear response to a glitch. Astrophys. J. 346, 823–832 (1989)

    Article  Google Scholar 

  14. Gugercinoglu, E., Alpar, M.A.: Neutron star dynamics under time-dependent external torques. Mon. Not. R. Astron. Soc. 471, 4827–4831 (2017)

    Article  Google Scholar 

  15. Alpar, M.A., Baykal, A.: Pulsar braking indices, glitches and energy dissipation in neutron stars. Mon. Not. R. Astron. Soc. 371, 489–496 (2006)

    Article  Google Scholar 

  16. Yi, S.X., Zhang, S.N.: The evolution of the magnetic inclination angle as an explanation of the long term red timing-noise of pulsars. Mon. Not. R. Astron. Soc. 454, 3674–3678 (2015)

    Article  Google Scholar 

  17. Riley, T.E., Watts, A.L., Bogdanov, S., Ray, P.S., Ludlam, R.M., Guillot, S., Arzoumanian, Z., Baker, C.L., Bilous, A.V., Chakrabarty, D., Gendrau, K.C.: A NICER view of PSR J0030+ 0451: millisecond pulsar parameter estimation. Astrophys. J. Lett. 887, L21 (2019)

    Article  Google Scholar 

  18. Dhooge, A., Gowaerts, W., Kuznetsov, Y.A.: MATCONT: a MATLAB package for numerical bifurcation analysis of ODEs. ACM Trans. Math. Softw. 29, 141–164 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

  20. Chunbiao, L., Sprott, J.C., Xing, H.: Constructing chaotic systems with conditional symmetry. Nonlinear Dyn. 87, 1351–1358 (2017)

    Article  MATH  Google Scholar 

  21. Li, X., Zheng, C., Wang, X., Cao, Y., Xu, G.: Symmetric coexisting attractors and extreme multistability in chaotic system. Mod. Phys. Lett. B 35, 2150458 (2021)

    Article  MathSciNet  Google Scholar 

  22. Wolf, A.: Quantifying chaos with Lyapunov exponents. Chaos 16, 273–290 (1986)

    Article  MathSciNet  Google Scholar 

  23. Pesin, Y.B.: Characteristic Lyapunov exponents and smooth ergodic theory. Russ. Math. Surv. 32, 55 (1977)

    Article  MATH  Google Scholar 

  24. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica D 16, 285–317 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  25. Newhouse, S., Ruelle, D., Takens, F.: Occurrence of strange AxiomA attractors near quasi periodic flows onT m, \(m\geqq 3\). Commun. Math. Phys. 64, 35–40 (1978)

    Article  MATH  Google Scholar 

  26. Dixon, T.W., Gherghetta, T., Kenny, B.G.: Universality in the quasiperiodic route to chaos. Chaos Interdiscip. J. Nonlinear Sci. 6, 32–42 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  27. de la Fuente, I.M., Martinez, L., Veguillas, J., Aguirregabiria, J.M.: Quasiperiodicity route to chaos in a biochemical system. Biophys. J. 71, 2375–2379 (1996)

    Article  Google Scholar 

  28. Venkatesan, A., Lakshmanan, M.: Different routes to chaos via strange nonchaotic attractors in a quasiperiodically forced system. Phys. Rev. E 58, 3008 (1998)

    Article  Google Scholar 

  29. Vandermeer, J.: Period ‘bubbling’ in simple ecological models: pattern and chaos formation in a quartic model. Ecol. Model. 95, 311–317 (1997)

    Article  Google Scholar 

  30. Kengne, J., Negou, A.N., Tchiotsop, D.: Antimonotonicity, chaos and multiple attractors in a novel autonomous memristor-based jerk circuit. Nonlinear Dyn. 88, 2589–2608 (2017)

    Article  Google Scholar 

  31. Liu, Y., Iu, H.H.C.: Antimonotonicity, chaos and multidirectional scroll attractor in autonomous ODEs chaotic system. IEEE Access 8, 77171–77178 (2020)

    Article  Google Scholar 

  32. Manneville, P., Pomeau, Y.: Different ways to turbulence in dissipative dynamical systems. Physica D 1, 219–226 (1980)

    Article  MathSciNet  Google Scholar 

  33. Manneville, P., Pomeau, Y.: Intermittency and the Lorenz model. Phys. Lett. A 75, 1–2 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  34. Jeffries, C., Perez, J.: Observation of a Pomeau–Manneville intermittent route to chaos in a nonlinear oscillator. Phys. Rev. A 26, 2117 (1982)

  35. Grebogi, C., Ott, E., Yorke, J.A.: Crises, sudden changes in chaotic attractors, and transient chaos. Physica D 7, 181–200 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tel, T.: Controlling transient chaos. J. Phys. A: Math. Gen. 24, L1359 (1991)

    Article  MathSciNet  Google Scholar 

  37. Aguirre, J., Viana, R.L., Sanjuán, M.A.: Fractal structures in nonlinear dynamics. Rev. Mod. Phys. 81, 333 (2009)

    Article  Google Scholar 

  38. Farmer, J.D., Ott, E., Yorke, J.A.: The dimension of chaotic attractors. Physica D 7, 153–180 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  39. Grassberger, P.: On the fractal dimension of the Henon attractor. Phys. Lett. A 97, 224–226 (1983)

    Article  MathSciNet  Google Scholar 

  40. Theiler, J.: Efficient algorithm for estimating the correlation dimension from a set of discrete points. Phys. Rev. A 36, 4456 (1987)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other supports were received during the preparation of this article.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization is done by all authors. Methodology and investigation are done by BD. Review and editing are done by MD. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Berc Deruni.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deruni, B., Dogan, M. Quasiperiodic and chaotic behaviours in time evolution of pulsar spin. Nonlinear Dyn 110, 3869–3880 (2022). https://doi.org/10.1007/s11071-022-07786-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07786-9

Keywords

Navigation