Skip to main content
Log in

Dynamic analysis of detumbling a rotating satellite using flexible deceleration rod

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Malfunctioning satellites are generally non-cooperative tumbling objects. Due to their complex tumbling motion, it is essential to stabilize the target within an acceptable rotating range in the pre-capture phase. In contrast to contactless methods, contact methods based on flexible devices are efficient and can generate sufficient operating torque through flexible contact. However, accurate dynamic analysis of the operation is challenging because of two limitations. It is difficult to obtain a high-efficiency description of the large deformation arising from the operating process. Moreover, the contact between a flexible device and a tumbling object is hard to detect efficiently. This paper proposes a method for detumbling a free-floating rotating satellite; it uses a flexible rod to contact the solar array of the target. The absolute nodal coordinate formulation is first applied to a rod-contact detumbling model in simulation to describe the large deformation of the rod precisely with a low computational burden. Next, a two-step method to detect the contact is employed to pinpoint the contact point and speed up the simulation: coarse detection in the contactless phase and fine detection in the contact phase. Finally, the feasibility of the contact detumbling method is verified. In addition, through further analysis of the contact process, some characteristics of this kind of strategy are studied for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Houman, H., Reza, E.M.: Assessment of active methods for removal of LEO debris. Acta Astronaut. 144, 225–243 (2018). https://doi.org/10.1016/j.actaastro.2017.12.036

    Article  Google Scholar 

  2. Acharya, S.P., Mukherjee, A., Janaki, M.S.: Accelerated magnetosonic lump wave solutions by orbiting charged space debris. Nonlinear Dyn. 105(1), 671–689 (2021). https://doi.org/10.1007/s11071-021-06594-x

    Article  Google Scholar 

  3. Wang, M., Luo, J., Yuan, J., Walter, U.: Detumbling strategy and coordination control of kinematically redundant space robot after capturing a tumbling target. Nonlinear Dyn. 92(3), 1023–1043 (2018). https://doi.org/10.1007/s11071-018-4106-4

    Article  Google Scholar 

  4. Forshaw, J.L., Aglietti, G.S., Fellowes, S., Salmon, T., Retat, I., Hall, A., et al.: The active space debris removal mission RemoveDebris. Part 1: from concept to launch. Acta Astronaut. 168, 293–309 (2020). https://doi.org/10.1016/j.actaastro.2019.09.002

    Article  Google Scholar 

  5. Lim, J., Chung, J.: Dynamic analysis of a tethered satellite system for space debris capture. Nonlinear Dyn. 94(4), 2391–2408 (2018). https://doi.org/10.1007/s11071-018-4498-1

    Article  Google Scholar 

  6. Flores-Abad, A., Wei, Z., Ma, O., Pham, K.: Optimal control of space robots for capturing a tumbling object with uncertainties. J. Guid. Control. Dyn. 37(6), 2014–2017 (2014). https://doi.org/10.2514/1.G000003

    Article  Google Scholar 

  7. Flores-Abad, A., Ma, O., Pham, K., Ulrich, S.: A review of space robotics technologies for on-orbit servicing. Prog. Aerosp. Sci. 68, 1–26 (2014). https://doi.org/10.1016/j.paerosci.2014.03.002

    Article  Google Scholar 

  8. Li, G., Xu, P.: Design and analysis of a deployable grasping mechanism for capturing non-cooperative space targets. Aerosp. Sci. Technol. 106, 106230 (2020). https://doi.org/10.1016/j.ast.2020.106230

    Article  Google Scholar 

  9. Ma, C., Dai, H., Wei, C., Yuan, J.: Two-stage filter for inertia characteristics estimation of high-speed tumbling targets. Aerosp. Sci. Technol. 89, 333–344 (2019). https://doi.org/10.1016/j.ast.2019.04.011

    Article  Google Scholar 

  10. Ledkov, A., Aslanov, V.: Evolution of space tethered system’s orbit during space debris towing taking into account the atmosphere influence. Nonlinear Dyn. 96(3), 2211–2223 (2019). https://doi.org/10.1007/s11071-019-04918-6

    Article  Google Scholar 

  11. Urrutxua, H., Bombardelli, C., Hedo, J.M.: A preliminary design procedure for an ion-beam shepherd mission. Aerosp. Sci. Technol. 88, 421–435 (2019). https://doi.org/10.1016/j.ast.2019.03.038

    Article  Google Scholar 

  12. Liu, X., Chang, H., Huang, P.: Eddy current de-tumbling large geostationary debris based on feedback linearization model predictive control. Aerosp. Sci. Technol. 112, 106641 (2021). https://doi.org/10.1016/j.ast.2021.106641

    Article  Google Scholar 

  13. Chen, G., Wang, Y., Wang, Y., Liang, J., Zhang, L., Pan, G.: Detumbling strategy based on friction control of dual-arm space robot for capturing tumbling target. Chin. J. Aeronaut. 33(3), 1093–1106 (2020). https://doi.org/10.1016/j.cja.2019.04.019

    Article  Google Scholar 

  14. Nishida, S.I., Kawamoto, S.: Strategy for capturing of a tumbling space debris. Acta Astronaut. 68(1), 113–120 (2011). https://doi.org/10.1016/j.actaastro.2010.06.045

    Article  Google Scholar 

  15. Nakajima, Y., Mitani, S., Tani, H., Murakami, N., Yamamoto, T., Yamanaka, K.: Detumbling space debris via thruster plume impingement. In: AIAA/AAS Astrodynamics Specialist Conference. American Institute of Aeronautics and Astronautics, Long Beach (2016)

  16. Nakajima, Y., Tani, H., Yamamoto, T., Murakami, N., Mitani, S., Yamanaka, K.: Contactless space debris detumbling: a database approach based on computational fluid dynamics. J. Guid. Control. Dyn. 41(9), 1906–1918 (2018). https://doi.org/10.2514/1.G003451

    Article  Google Scholar 

  17. Bennett, T., Schaub, H.: Touchless electrostatic three-dimensional detumbling of large axi-symmetric debris. J. Astronaut. Sci. 62(3), 233–253 (2015). https://doi.org/10.1007/s40295-015-0075-8

    Article  Google Scholar 

  18. Gómez, N.O., Walker, S.J.I.: Earth’s gravity gradient and eddy currents effects on the rotational dynamics of space debris objects: envisat case study. Adv. Space Res. 56(3), 494–508 (2015). https://doi.org/10.1016/j.asr.2014.12.031

  19. Gómez, N.O., Walker, S.J.I.: Guidance, navigation, and control for the eddy brake method. J. Guid. Control. Dyn. 40(1), 52–68 (2016). https://doi.org/10.2514/1.G002081

    Article  Google Scholar 

  20. Gómez, N.O., Walker, S.J.I.: Eddy currents applied to de-tumbling of space debris: Analysis and validation of approximate proposed methods. Acta Astronaut. 114, 34–53 (2015). https://doi.org/10.1016/j.actaastro.2015.04.012

    Article  Google Scholar 

  21. Kumar, R., Sedwick, R.J.: Despinning orbital debris before docking using laser ablation. J. Spacecr. Rocket. 52(4), 1129–1134 (2015). https://doi.org/10.2514/1.A33183

    Article  Google Scholar 

  22. Kirk, H., Steve, U.: Attitude stabilization of an uncooperative spacecraft in an orbital environment using visco-elastic tethers. In: AIAA Guidance, Navigation, and Control Conference, San Diego (2016)

  23. Wang, D., Huang, P., Meng, Z.: Coordinated stabilization of tumbling targets using tethered space manipulators. IEEE Trans. Aerosp. Electron. Syst. 51(3), 2420–2432 (2015). https://doi.org/10.1109/TAES.2015.140530

    Article  Google Scholar 

  24. Wu, H., Sun, S., Wei, C., Zhang, H., Zhao, Y.: Tumbling target despun based on robotic flexible brush. Acta Aeronaut. Astronaut. Sin. (in Chinese) 40(5), 422587 (2019). https://doi.org/10.7527/S1000-98-6893.2018.22587

    Article  Google Scholar 

  25. Liu, Y., Yu, Z., Liu, X., Cai, G.: Active detumbling technology for high dynamic non-cooperative space targets. Multibody Syst. Dyn. 47(1), 21–41 (2019). https://doi.org/10.1007/s11044-019-09675-3

  26. Liu, Y., Yu, Z., Liu, X., Chen, J., Cai, G.: Active detumbling technology for noncooperative space target with energy dissipation. Adv. Space Res. 63(5), 1813–1823 (2019). https://doi.org/10.1016/j.asr.2018.11.017

    Article  Google Scholar 

  27. Wang, X., Zhou, Z., Chen, Y., Chen, S.: Optimal contact control for space debris detumbling and nutation damping. Adv. Space Res. 66(4), 951–962 (2020). https://doi.org/10.1016/j.asr.2020.04.043

    Article  Google Scholar 

  28. Berzeri, M., Shabana, A.A.: Development of simple models for the elastic forces in the absolute nodal co-ordinate formulation. J. Sound Vibr. 235(4), 539–565 (2000). https://doi.org/10.1006/jsvi.1999.2935

    Article  Google Scholar 

  29. Wago, T., Kobayashi, N., Sugawara, Y.: Improvement on evaluating axial elastic force in Bernoulli–Euler beam based on the absolute nodal coordinate formulation by accurate mean axial strain measure. In: Volume 4: 8th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, Parts A and B, pp. 963–970. ASMEDC, Washington (2011)

  30. Sopanen, J.T., Mikkola, A.M.: Description of elastic forces in absolute nodal coordinate formulation. Nonlinear Dyn. 34(1), 53–74 (2003). https://doi.org/10.1023/B:NODY.0000014552.68786.bc

    Article  MATH  Google Scholar 

  31. Singh, S., Mooij, E.: Robust control for active debris removal of a large flexible space structure. In: AIAA SciTech Forum. American Institute of Aeronautics and Astronautics (2020). https://arc.aiaa.org/doi/10.2514/6.2020-2077

  32. Sapietová, A., Gajdoš, L., Dekýš, V., Sapieta, M.: Analysis of the influence of input function contact parameters of the impact force process in the MSC. ADAMS. In: Jabłoński R, Brezina T (eds.) Advanced Mechatronics Solutions. Advances in Intelligent Systems and Computing, pp. 243–253. Springer, Cham (2016)

  33. Pennestrì, E., Rossi, V., Salvini, P., Valentini, pp: Review and comparison of dry friction force models. Nonlinear Dyn. 83(4), 1785–1801 (2016). https://doi.org/10.1007/s11071-015-2485-3

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No.12072270 and No.U2013206) and National Key Research and Development Program of China (No.2021YFA0717100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Chen.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, H., Chen, H. & Yue, X. Dynamic analysis of detumbling a rotating satellite using flexible deceleration rod. Nonlinear Dyn 108, 3331–3345 (2022). https://doi.org/10.1007/s11071-022-07414-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07414-6

Keywords

Navigation