Skip to main content
Log in

An unconditionally stable time integration method with controllable dissipation for second-order nonlinear dynamics

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes a two-sub-step time integration method with controllable dissipation to solve nonlinear dynamic problems. The proposed method has second-order accuracy, unconditional stability and zero-order overshoots. In addition, different from most existing time integration methods, the present method is self-starting, and initial acceleration vector is not required. Importantly, the well-known BN-stability theory for first-order nonlinear dynamics is employed to design algorithmic parameters; thus, the present method is BN-stable, or unconditionally stable for nonlinear dynamics. The present method can give stable and accurate predictions for nonlinear problems in which some excellent methods such as the trapezoidal rule and the ρ-Bathe method fail. A few representative nonlinear numerical examples show that the proposed method enjoys advantages in accuracy, stability and energy conservation compared with the trapezoidal rule and the ρ-Bathe method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability statement

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Bathe, K.J.: Finite Element Procedures. Prentice Hall, Upper Saddle River (1996)

    MATH  Google Scholar 

  2. Chung, J., Hulbert, G.M.: A time integration algorithm for structural dynamics with improved numerical dissipation: the Generalized-α method. J. Appl. Mech. 60(2), 371–375 (1993)

    Article  MathSciNet  Google Scholar 

  3. Shao, H.P., Cai, C.W.: A three parameters algorithm for numerical integration of structural dynamic equations. Chin. J. Appl. Mech. 5(4), 76–81 (1988)

    Google Scholar 

  4. Wood, W.L., Bossak, M., Zienkiewicz, O.C.: An alpha modification of Newmark’s method. Int. J. Numer. Methods Eng. 15, 1562–1566 (1980)

    Article  MathSciNet  Google Scholar 

  5. Hilber, H.M., Hughes, T.J.R., Taylor, R.L.: Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq. Eng. Struct. D. 5, 283–292 (1977)

    Article  Google Scholar 

  6. Zhou, X., Tamma, K.K.: Design, analysis, and synthesis of generalized single step single solve and optimal algorithms for structural dynamics. Int. J. Numer. Methods Eng. 59, 597–668 (2004)

    Article  MathSciNet  Google Scholar 

  7. Kennedy, C.A., Carpenter, M.H.: Diagonally implicit Runge-Kutta methods for stiff ODEs. Appl. Numer. Math. 146, 221–244 (2019)

    Article  MathSciNet  Google Scholar 

  8. Boom, P.D., Zingg, D.W.: Optimization of high-order diagonally-implicit Runge-Kutta methods. J. Comput. Phys. 1(15), 168–191 (2018)

    Article  MathSciNet  Google Scholar 

  9. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. John Wiley and Sons, Chichester (2016)

    Book  Google Scholar 

  10. Calvo, M., Montijano, J.I., Randez, L.: Constructive characterization of Runge-Kutta methods that satisfy the M-condition. Bol. Soc. Esp. Mat. Apl. 74, 345–359 (2017)

    MathSciNet  MATH  Google Scholar 

  11. Dong, S.: BDF-like methods for nonlinear dynamic analysis. J. Comput. Phys. 229(8), 3019–3045 (2010)

    Article  MathSciNet  Google Scholar 

  12. Gear, C.W.: Numerical Initial Value Problems in Ordinary Differential Equations. Prentice Hall, New Jersey (1971)

    MATH  Google Scholar 

  13. Zhang, H.M., Zhang, R.S., Masarati, P.: Improved second-order unconditionally stable schemes of linear multi-step and equivalent single-step integration methdos. Comput. Mech. 67, 289–313 (2021)

    Article  MathSciNet  Google Scholar 

  14. Bathe, K.J., Baig, M.M.I.: On a composite implicit time integration procedure for nonlinear dynamics. Comput. Struct. 83, 2513–2534 (2005)

    Article  MathSciNet  Google Scholar 

  15. Bathe, K.J.: Conserving energy and momentum in nonlinear dynamics: a simple implicit time integration scheme. Comput. Struct. 85(7–8), 437–445 (2007)

    Article  MathSciNet  Google Scholar 

  16. Nilsson, K., Tornberg, F.: On blowdown analysis with efficient and reliable direct time integration methods for wave propagation and fluid-structure-interaction response. Comput. Struct. 216, 1–14 (2019)

    Article  Google Scholar 

  17. Chandra, Y., Zhou, Y., Stanciulescu, I., Eason, T., Spottswood, S.: A robust composite time integration scheme for snap-through problems. Comput. Mech. 55, 1041–1056 (2015)

    Article  MathSciNet  Google Scholar 

  18. Wen, W.B., Wei, K., Lei, H.S., Duan, S.Y., Fang, D.N.: A novel sub-step composite implicit time integration scheme for structural dynamics. Comput. Struct. 182, 176–186 (2017)

    Article  Google Scholar 

  19. Xing, Y.F., Ji, Y., Zhang, H.M.: On the construction of a type of composite time integration methods. Comput. Struct. 221, 157–178 (2019)

    Article  Google Scholar 

  20. Zhang, H.M., Xing, Y.F.: Optimization of a class of composite method for structural dynamics. Comput. Struct. 202, 60–73 (2018)

    Article  Google Scholar 

  21. Noh, G., Bathe, K.J.: The Bathe time integration method with controllable spectral radius: the ρ-Bathe method. Comput. Struct. 212, 299–310 (2019)

    Article  Google Scholar 

  22. Kim, W., Choi, S.Y.: An improved implicit time integration algorithm: the generalized composite time integration algorithm. Comput. Strcut. 196, 341–354 (2018)

    Article  Google Scholar 

  23. Li, J.Z., Yu, K.P.: A novel family of controllably dissipative composite integration algorithms for structural dynamic analysis. Nonlinear Dyn. 96(4), 2475–2507 (2019)

    Article  Google Scholar 

  24. Ji, Y., Xing, Y.F.: An optimized three-sub-step composite time integration method with controllable numerical dissipation. Comput. Strcut. 231, 106210 (2020)

    Article  Google Scholar 

  25. Zhang, H.M., Zhang, R.S., Xing, Y.F., Masarati, P.: On the optimization of n-sub-step composite time integration methods. Nonlinear Dyn. 102, 1939–1962 (2020)

    Article  Google Scholar 

  26. Kuhl, D., Crisfield, M.A.: Energy-conserving and decaying algorithms in nonlinear structural dynamics. Int. J. Numer. Meth. Engng. 45, 569–599 (1999)

    Article  Google Scholar 

  27. Burrage, K., Butcher, J.C.: Stability criteria for implicit Runge-Kutta methods. SIAM J. Numer. Anal. 16(1), 46–57 (1979)

    Article  MathSciNet  Google Scholar 

  28. Burrage, K.: High order algebraically stable Runge-Kutta methods. BIT 18, 373–383 (1978)

    Article  MathSciNet  Google Scholar 

  29. Butcher, J.C.: Nonlinear stability of a general class of differential equation methods. BIT 20, 185–203 (1980)

    Article  MathSciNet  Google Scholar 

  30. Soares, D.: A model/solution-adaptive explicit-implicit time marching technique for wave propagation analysis. Int. J. Numer. Methods Eng. 119, 590–617 (2019)

    Article  MathSciNet  Google Scholar 

  31. Har, J., Tamma, K.K.: Advances in Computational Dynamics of Particles, Materials and Structures. John Wiley & Sons, New York (2012)

    Book  Google Scholar 

  32. Hughes, T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice Hall, New Jersey (1987)

    MATH  Google Scholar 

  33. Ji, Y., Xing, Y.F.: An improved higher-order time integration algorithm for structural dynamics. CMES-Comp. Model. Eng. 126(2), 519–575 (2021)

    Google Scholar 

Download references

Acknowledgements

The support of the National Natural Science Foundation of China (11872090) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufeng Xing.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Effective stiffness matrices and load vectors

Appendix A: Effective stiffness matrices and load vectors

The time-stepping equations have the forms as

$$ \left\{ {\begin{array}{*{20}l} {{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\user2{K}} }_{1} {\user2{x}}_{{t + c_{1} \Delta t}} = {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\user2{R}} }_{1} } \hfill \\ {{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\user2{K}} }_{2} {\user2{x}}_{{t + c_{2} \Delta t}} = {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\user2{R}} }_{2} } \hfill \\ \end{array} } \right. $$
(A.1)

where the effective stiffness matrices are

$$ {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\user2{K}} }_{1} = \frac{1}{{c_{1}^{2} \Delta t^{2} }}{\user2{M}} + \frac{1}{{c_{1} \Delta t}}{\user2{C}} + {\user2{K}} $$
(A.2)
$$ {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\user2{K}} }_{2} = \frac{1}{{c_{2}^{2} \alpha^{2} \Delta t^{2} }}{\user2{M}} + \frac{1}{{c_{2} \alpha \Delta t}}{\user2{C}} + {\user2{K}} $$
(A.3)

and the load vectors are

$$ {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\user2{R}} }_{1} = {\user2{Q}}(t + c_{1} \Delta t) + {\user2{M}}\left( {\frac{1}{{c_{1}^{2} \Delta t^{2} }}{\user2{x}}_{t} + \frac{1}{{c_{1} \Delta t}}\dot{\user2{x}}_{t} } \right){ + }\frac{1}{{c_{1} \Delta t}}{\user2{Cx}}_{t} $$
(A.4)
$$ \begin{aligned} {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\user2{R}} }_{2} & = {\user2{Q}}(t + c_{2} \Delta t) + {\user2{M}}\left[\frac{1}{{c_{2}^{2} \alpha^{2} \Delta t^{2} }}{\user2{x}}_{t} + \frac{1}{{c_{2} \alpha^{2} \Delta t}}\left( {1 - \alpha } \right)\dot{\user2{x}}_{{t + c_{1} \Delta t}} { + }\frac{1}{{c_{2} \alpha \Delta t}}\dot{\user2{x}}_{t} + \frac{1}{\alpha }\left( {1 - \alpha } \right)\ddot{\user2{x}}_{{t + c_{1} \Delta t}} \right]\\ & \quad + C\left[ {\frac{1}{{c_{2} \alpha \Delta t}}{\user2{x}}_{t} + \frac{1}{\alpha }\left( {1 - \alpha } \right)\ddot{\user2{x}}_{{t + c_{1} \Delta t}} } \right] \\ \end{aligned} $$
(A.5)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Y., Xing, Y. & Wiercigroch, M. An unconditionally stable time integration method with controllable dissipation for second-order nonlinear dynamics. Nonlinear Dyn 105, 3341–3358 (2021). https://doi.org/10.1007/s11071-021-06720-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06720-9

Keywords

Navigation