Skip to main content
Log in

Robust control of reaction wheel bicycle robot via adaptive integral terminal sliding mode

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

An Author Correction to this article was published on 05 May 2021

This article has been updated

Abstract

In this paper, the modelling of a reaction wheel bicycle robot (RWBR) is identified from a second-order mathematical model which is similar to an inverted pendulum, and an adaptive integral terminal sliding mode (AITSM) control scheme is developed for balancing purpose of the RWBR. The proposed AITSM control scheme can not only stabilize the bicycle robot and reject external disturbances generated by uncertainties and unmodelled dynamics, but also eliminate the need of the required bound information in the control law via the designed adaptive laws. The experimental results verify the excellent performance of the proposed control scheme in terms of strong robustness, fast error convergence in comparison with other control schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. Tanaka, Y., Murakami, T.: A study on straight-line tracking and posture control in Electric Bicycle. IEEE Trans. Industr. Electron. 56(1), 159–168 (2009)

    Article  Google Scholar 

  2. Limebeer, D.J., Sharp, R.S.: Bicycles, motorcycles, and models. IEEE Control Syst. Mag. 26(5), 34–61 (2006)

    Article  Google Scholar 

  3. Hess, R., Moore, J.K., Hubbard, M.: Modeling the manually controlled bicycle. IEEE Trans. Syst., Man, Cybern. - Part A: Syst. Humans. 42(3), 545–557 (2012)

    Article  Google Scholar 

  4. Shafiei, M.H., Emami, M.: Design of a robust path tracking controller for an unmanned bicycle with guaranteed stability of roll dynamics. Syst. Sci. Control Eng. 7(1), 12–19 (2019)

    Article  Google Scholar 

  5. Wang, P., Yi, J., Liu, T.: Stability and control of a rider–bicycle System: Analysis and experiments. IEEE Trans. Autom. Sci. Eng. 17(1), 348–360 (2020)

    Article  Google Scholar 

  6. Astrom, K.J., Klein, R.E., Lennartsson, A.: Bicycle dynamics and control: adapted bicycles for education and research. IEEE Control Syst. Mag. 25(4), 26–47 (2005)

    Article  MathSciNet  Google Scholar 

  7. Sharp, R.S.: The stability and control of motorcycles. J. Mech. Eng. Sci. 13(5), 316–329 (1971)

    Article  Google Scholar 

  8. Meijaard, J.P., Papadopoulos, J.M., Ruina, A., Schwab, A.L.: Linearized dynamics equations for the balance and steer of a bicycle: A benchmark and review. Proc. Math. Phys. Eng. Sci. 463, 1955–1982 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Whipple, F.J.W.: The stability of the motion of a bicycle. Quarterly J. Pure Appl. Math. 30, 312–348 (2017)

    MATH  Google Scholar 

  10. Defoort, M., Murakami, T.: Sliding-mode control scheme for an intelligent bicycle. IEEE Trans. Industr. Electron. 56(9), 3357–3368 (2009)

    Article  Google Scholar 

  11. Jones, D.E.H.: The stability of the bicycle. Phys. Today. 23(4), 34–40 (1970)

    Article  Google Scholar 

  12. Kim, H., An, J., Yoo, H. d., Lee, J.: Balancing control of bicycle robot using PID control. In: 2013 13th International Conference on Control, Automation and Systems. (2013). doi: https://doi.org/10.1109/ICCAS.2013.6703879.

  13. Han, S., Lee, J.: Balancing and velocity control of a unicycle robot based on the dynamic model. IEEE Trans. Industr. Electron. 62(1), 405–413 (2015)

    Article  Google Scholar 

  14. Sharp, R.S.: Optimal stabilization and path-following controls for a bicycle. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 221(4), 415–427 (2007)

    Article  Google Scholar 

  15. David, R.R., Ismael, P.G., Fernando, C.G., Sergio, P.J.: Improving Energy Efficiency of an Autonomous Bicycle with Adaptive Controller Design. Sustainability. 9(6), 866 (2017)

    Google Scholar 

  16. Hwang, C.L., Wu, H.M., Shih, C.L.: Fuzzy Sliding-Mode Underactuated Control for Autonomous Dynamic Balance of an Electrical Bicycle. IEEE Trans. Control Syst. Technol. 17(3), 658–670 (2009)

    Article  Google Scholar 

  17. Gupta, N.K., Ambikapathy, A.: Self-Balancing Bicycle using Reaction Wheel. Int. J. Eng. Sci. Comput.. 9(4), 21402–21407 (2019)

    Google Scholar 

  18. Zhang, J., Wang, H., Zheng, J., Cao, Z., Man, Z., Yu, M., Chen, L.: Adaptive sliding mode-based lateral stability control of Steer-by-Wire vehicles with experimental validations. IEEE Transactions on Vehicular Technology. available online. (2020). doi: https://doi.org/10.1109/TVT.2020.3003326

  19. Wang, H., He, P., Yu, M., Liu, L., Kong, H., Man, Z.: Adaptive neural network sliding mode control for steer-by-wire vehicle stability control. J. Intell. Fuzzy Syst. 31(2), 885–902 (2016)

    Article  Google Scholar 

  20. Chen, L., Wang, H., Huang. Y., Ping, Z., Yu, M., Ye, M., Hu, Y.: Robust hierarchical terminal sliding mode control of two-wheeled self-balancing vehicle using perturbation estimation. Mech. Syst. Signal Process. 139, (2020)

  21. Shao, K., Zheng, J., Wang, H., Xu F., Wang X., Liang B.: Recursive sliding mode control with adaptive disturbance observer for a linear motor positioner. Mech. Syst. Signal Process. 146, (2020)

  22. Wang, H., Li, Z., Jin, X., Huang, Y., Kong, H., Yu, M., Ping, Z., Sun, Z.: Adaptive integral terminal sliding mode control for automobile electronic throttle via an uncertainty observer and experimental validation. IEEE Trans. Veh. Technol. 67(9), 8129–8143 (2018)

    Article  Google Scholar 

  23. Hu, Y., Wang, H.: Robust tracking control for vehicle electronic throttle using adaptive dynamic sliding mode and extended state observer. Mech. Syst. Signal Process. 135, 1–18 (2020)

    Article  Google Scholar 

  24. Wang, H., Liu, L., He, P., Yu, M., Kong, H., Man, Z.: Robust adaptive position control of automotive electronic throttle valve using PID-type sliding mode technique. Nonlinear Dyn. 85(2), 1331–1344 (2016)

    Article  Google Scholar 

  25. Zhang, J., Wang, H., Cao, Z., Zheng, J., Yu, M., Yazdani, A., Shahnia, F.: Fast nonsingular terminal sliding mode control for permanent magnet linear motor via ELM. Neural Comput. Appl. 32, 14447–14457 (2020)

    Article  Google Scholar 

  26. Shao, K., Zheng, J., Huang, K., Wang, H., Man, Z., Fu, M.: Finite-Time Control of a Linear Motor Positioner Using Adaptive Recursive Terminal Sliding Mode. IEEE Trans. Industr. Electron. 67(8), 6659–6668 (2020)

    Article  Google Scholar 

  27. Hou, Q., Ding, S., Yu, X.: Composite Super-twisting Sliding Mode Control Design for PMSM Speed Regulation Problem Based on a Novel Disturbance Observer. IEEE Trans. Energy Conv. available online. (2020).

  28. Wang, X., Li, S., Yu, X., Yang, J.: Distributed active anti-disturbance consensus for leader-follower higher-order multi-agent systems with mismatched disturbances. IEEE Trans. Autom. Control 62(11), 5795–5801 (2017)

    Article  MathSciNet  Google Scholar 

  29. Liu, L., Zheng, W., Ding, S.: An adaptive SOSM controller design by using a sliding-mode-based filter and its application to buck converter. IEEE Trans. Circuits Syst.-I: Regular Papers. 67(7), 2409–2418 (2020)

    Article  MathSciNet  Google Scholar 

  30. Wang, X., Li, S., Lam, J.: Distributed active anti-disturbance output consensus algorithms for higher-order multiagent systems with mismatched disturbances. Automatica 74, 30–37 (2016)

    Article  MathSciNet  Google Scholar 

  31. Gao, W., Hung, J.C.: Variable structure control of nonlinear systems: a new approach. IEEE Trans. Industr. Electron. 40(1), 45–55 (1993)

    Article  Google Scholar 

  32. Wang, H., Man, Z., Kong, H., Zhao, Y., Yu, M., Cao, Z., Zheng, J.: Design and implementation of adaptive terminal sliding mode control on a Steer-by-Wire Equipped vehicle. IEEE Trans. Ind. Electron. 63(9), 5774–5785 (2016)

    Article  Google Scholar 

  33. Edwards, C., Spurgeon, S.: Sliding mode control theory and applications. CRC Press, Boca Raton (1998)

    Book  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (Grant Number 61771178).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Funding information and grant number were omitted from the original article.

Appendices

Appendix 1

Given the following first-order nonlinear differential inequality

$$ \dot{V}\left( x \right) + {\Gamma }V^{\mu } \left( x \right) \le 0 $$
(30)

where \(V\left( x \right):R^{n} \to R\) represents a continuous positive definite function with respect to the state \(x \in R^{n}\), \({\Gamma } > 0\), \(0 < \mu < 1\), then the origin is a globally finite-time stable equilibrium for (30) with its convergence time being

$$ t_{\sigma } \le \frac{{V^{1 - \mu } \left( {x_{0} } \right)}}{{{\Gamma }\left( {1 - \mu } \right)}} $$
(31)

The derivation is referred to [33] and references therein.

Appendix 2

When the sliding motion \(s = 0\) is established, for the system \(\dot{e} = - \beta e - \alpha \smallint e^{{q_{1} /q_{2} }} {\text{ d}}t\), by choosing the Lyapunov function \(V = 0.5e^{2}\), the derivative of \(V\) can be given as:

$$ \begin{aligned} \dot{V} & & = e\dot{e} \\ & = e\left( { - \beta e - \alpha \smallint e^{{q_{1} /q_{2} }} {\text{ d}}t} \right) \\ & = - \beta e^{2} - \frac{{\alpha q_{2} }}{{\left( {q_{1} + q_{2} } \right)}}e^{{q_{1} /q_{2} + 2}} \\ & = - \beta \left| e \right|^{2} - \frac{{\alpha q_{2} }}{{\left( {q_{1} + q_{2} } \right)}}\left| e \right| \cdot \left| e \right|^{{q_{1} /q_{2} + 1}} {\text{sign}}\left( e \right) \\ & = - \left| e \right|\left( {\beta \left| e \right| + \frac{{\alpha q_{2} }}{{\left( {q_{1} + q_{2} } \right)}}\left| e \right|^{{q_{1} /q_{2} + 1}} {\text{sign}}\left( e \right)} \right) \\ & \le - \xi \left| e \right| \\ \end{aligned} $$
(32)

where \(\xi = \beta \left| e \right| - \frac{{\alpha q_{2} }}{{\left( {q_{1} + q_{2} } \right)}}\left| e \right|^{{q_{1} /q_{2} + 1}}\) with following condition being satisfied when \(e \ne 0\):

$$ \frac{{\beta \left( {q_{1} + q_{2} } \right)}}{{\alpha q_{2} }} \ge \left| e \right|^{{q_{1} /q_{2} }} $$
(33)

By properly choosing the values for \(\alpha\), \(\beta\), \(q_{1}\), \(q_{2}\) such that Eq. (32) can be always fulfilled, then according to Appendix 1, \(e\) converges to origin with finite time

$$ t_{s} \le \frac{{q_{2} \left| {e_{0} } \right|}}{{\xi \left( {q_{2} - q_{1} } \right)}} $$
(34)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Liu, J., Wang, H. et al. Robust control of reaction wheel bicycle robot via adaptive integral terminal sliding mode. Nonlinear Dyn 104, 2291–2302 (2021). https://doi.org/10.1007/s11071-021-06380-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06380-9

Keyword

Navigation