Skip to main content
Log in

A uniform chaotic system with extended parameter range for image encryption

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Chaotic maps are found to be a promising external entropy source for image encryption. However, many existing chaotic systems have relatively narrow parameter space and cannot generate uniformly distributed sequences, which may reduce the reliability of cryptosystem. In this paper, a novel chaotification model named as UCS is proposed to improve the statistical property and expand the parameter range of existing maps. The new chaotic maps generated from UCS exhibit more complex chaotic behaviors than seed maps, and the two independent parameters can take almost any value in \(\mathbf {R}^2\). Moreover, the iterated chaotic sequences are approximately uniformly distributed and thus have better randomness. Based on the improved chaotic maps, a new image encryption algorithm is designed, which encodes digital images by derangement-based confusion, row–column bidirectional diffusion and 2D zigzag diffusion. Experimental results indicate the high performance of the proposed image encryption scheme, since it has obtained excellent results in various tests when compared with several existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Patel, K.D., Belani, S.: Image encryption using different techniques: a review. Int. J. Emerg. Technol. Adv. Eng. 1(1), 30–34 (2011)

    Google Scholar 

  2. Lian, S., Kanellopoulos, D., Ruffo, G.: Recent advances in multimedia information system security. Informatica 33(1), (2009)

  3. Dang, P.P., Chau, P.M.: Image encryption for secure internet multimedia applications. IEEE Trans. Consum. Electron. 46(3), 395–403 (2000)

    Article  Google Scholar 

  4. Daemen, J., Rijmen, V.: The Design of Rijndael: AES-the Advanced Encryption Standard. Springer, Berlin (2013)

    MATH  Google Scholar 

  5. Coppersmith, D.: The Data Encryption Standard (DES) and its strength against attacks. IBM J. Res. Dev. 38(3), 243–250 (1994)

    Article  Google Scholar 

  6. Ye, G., Pan, C., Dong, Y., Shi, Y., Huang, X.: Image encryption and hiding algorithm based on compressive sensing and random numbers insertion. Sig. Process. 172, 107563 (2020). https://doi.org/10.1016/j.sigpro.2020.107563

    Article  Google Scholar 

  7. Ye, H.S., Zhou, N.R., Gong, L.H.: Multi-image compression-encryption scheme based on quaternion discrete fractional Hartley transform and improved pixel adaptive diffusion. Sig. Process. 175, 107652 (2020). https://doi.org/10.1016/j.sigpro.2020.107652

    Article  Google Scholar 

  8. Liu, Y., Zhang, L.Y., Wang, J., Zhang, Y., Wong, K.W.: Chosen-plaintext attack of an image encryption scheme based on modified permutation-diffusion structure. Nonlinear Dyn. 84(4), 2241–2250 (2016)

    Article  Google Scholar 

  9. He, C., Ming, K., Wang, Y., Wang, Z.J.: A Deep Learning Based Attack for The Chaos-based Image Encryption. arXiv preprint arXiv:1907.12245 (2019)

  10. Li, M., Lu, D., Xiang, Y., Zhang, Y., Ren, H.: Cryptanalysis and improvement in a chaotic image cipher using two-round permutation and diffusion. Nonlinear Dyn. 96(1), 31–47 (2019). https://doi.org/10.1007/s11071-019-04771-7

    Article  MATH  Google Scholar 

  11. Refregier, P., Javidi, B.: Optical image encryption based on input plane and Fourier plane random encoding. Opt. Lett. 20(7), 767–769 (1995)

    Article  Google Scholar 

  12. Chen, G., Mao, Y., Chui, C.K.: A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos Solitons Fractals 21(3), 749–761 (2004)

    Article  MathSciNet  Google Scholar 

  13. Shyu, S.J.: Image encryption by random grids. Pattern Recognit. 40(3), 1014–1031 (2007)

    Article  Google Scholar 

  14. Zhang, G., Liu, Q.: A novel image encryption method based on total shuffling scheme. Opt. Commun. 284(12), 2775–2780 (2011)

    Article  Google Scholar 

  15. Chai, X., Zhang, J., Gan, Z., Zhang, Y.: Medical image encryption algorithm based on Latin square and memristive chaotic system. Multimed. Tools Appl. 78(24), 35419–35453 (2019). https://doi.org/10.1007/s11042-019-08168-x

    Article  Google Scholar 

  16. Ye, G.: Image scrambling encryption algorithm of pixel bit based on chaos map. Pattern Recognit. Lett. 31(5), 347–354 (2010)

    Article  Google Scholar 

  17. Kang, X., Han, Z., Yu, A., Duan, P.: Double random scrambling encoding in the RPMPFrHT domain. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 4362–4366 (2017). https://doi.org/10.1109/ICIP.2017.8297106

  18. Guan, Z.H., Huang, F., Guan, W.: Chaos-based image encryption algorithm. Phys. Lett. A 346(1–3), 153–157 (2005)

    Article  Google Scholar 

  19. Pareek, N.K., Patidar, V., Sud, K.K.: Image encryption using chaotic logistic map. Image Vis. Comput. 24(9), 926–934 (2006)

    Article  Google Scholar 

  20. Chai, X., Chen, Y., Broyde, L.: A novel chaos-based image encryption algorithm using DNA sequence operations. Opt. Lasers Eng. 88, 197–213 (2017)

    Article  Google Scholar 

  21. Pak, C., Huang, L.: A new color image encryption using combination of the 1D chaotic map. Sig. Process. 138, 129–137 (2017). https://doi.org/10.1016/j.sigpro.2017.03.011

    Article  Google Scholar 

  22. Gayathri, J., Subashini, S.: An efficient spatiotemporal chaotic image cipher with an improved scrambling algorithm driven by dynamic diffusion phase. Inf. Sci. 489, 227–254 (2019). https://doi.org/10.1016/j.ins.2019.01.082

    Article  MATH  Google Scholar 

  23. Li, S., Chen, G., Mou, X.: On the dynamical degradation of digital piecewise linear chaotic maps. Int. J. Bifurc. Chaos 15(10), 3119–3151 (2005)

    Article  MathSciNet  Google Scholar 

  24. Phatak, S.C., Rao, S.S.: Logistic map: a possible random-number generator. Phys. Rev. E 51(4), 3670 (1995)

    Article  Google Scholar 

  25. Schneier, B., Sutherland, P.: Applied Cryptography: Protocols, Algorithms, and Source Code in C, 2nd edn. Wiley, New York (1995)

    Google Scholar 

  26. Radwan, A.G., Abd-El-Hafiz, S.K.: Image encryption using generalized tent map. In: 2013 IEEE 20th International Conference on Electronics, Circuits, and Systems (ICECS). IEEE, pp. 653–656 (2013)

  27. Hua, Z., Zhou, Y., Pun, C.M., Chen, C.P.: 2D Sine Logistic modulation map for image encryption. Inf. Sci. 297, 80–94 (2015)

    Article  Google Scholar 

  28. Zhou, Y., Bao, L., Chen, C.P.: A new 1D chaotic system for image encryption. Sig. Process. 97, 172–182 (2014). https://doi.org/10.1016/j.sigpro.2013.10.034

    Article  Google Scholar 

  29. Hua, Z., Zhou, B., Zhou, Y.: Sine-Transform-Based Chaotic System With FPGA Implementation. IEEE Trans. Ind. Electron. 65(3), 2557–2566 (2018). https://doi.org/10.1109/TIE.2017.2736515

    Article  Google Scholar 

  30. Hua, Z., Zhou, Y., Huang, H.: Cosine-transform-based chaotic system for image encryption. Inf. Sci. 480, 403–419 (2019). https://doi.org/10.1016/j.ins.2018.12.048

    Article  Google Scholar 

  31. Lan, R., He, J., Wang, S., Gu, T., Luo, X.: Integrated chaotic systems for image encryption. Sig. Process. 147, 133–145 (2018)

    Article  Google Scholar 

  32. Parvaz, R., Zarebnia, M.: A combination chaotic system and application in color image encryption. Opt. Laser Technol. 101, 30–41 (2018)

    Article  Google Scholar 

  33. Asgari-Chenaghlu, M., Balafar, M.A., Feizi-Derakhshi, M.R.: A novel image encryption algorithm based on polynomial combination of chaotic maps and dynamic function generation. Sig. Process. 157, 1–13 (2019). https://doi.org/10.1016/j.sigpro.2018.11.010

    Article  Google Scholar 

  34. Alawida, M., Samsudin, A., Teh, J.S., Alkhawaldeh, R.S.: A new hybrid digital chaotic system with applications in image encryption. Sig. Process. 160, 45–58 (2019). https://doi.org/10.1016/j.sigpro.2019.02.016

    Article  Google Scholar 

  35. Zhou, Y., Hua, Z., Pun, C., Chen, C.L.P.: Cascade chaotic system with applications. IEEE Trans. Cybern. 45(9), 2001–2012 (2015). https://doi.org/10.1109/TCYB.2014.2363168

    Article  Google Scholar 

  36. Hua, Z., Jin, F., Xu, B., Huang, H.: 2D Logistic-Sine-coupling map for image encryption. Sig. Process. 149, 148–161 (2018). https://doi.org/10.1016/j.sigpro.2018.03.010

    Article  Google Scholar 

  37. Huang, X.L., Dong, Y.X., Jiao, K.X., Ye, G.D.: Asymmetric pixel confusion algorithm for images based on RSA and Arnold transform. Front. Inf. Technol. Electron. Eng. 21(12), 1783–1794 (2020). https://doi.org/10.1631/FITEE.2000241

    Article  Google Scholar 

  38. Ye, G., Jiao, K., Wu, H., Pan, C., Huang, X.: An asymmetric image encryption algorithm based on a fractional-order chaotic system and the RSA public-key cryptosystem. Int. J. Bifurc. Chaos 30(15), 2050233 (2020). https://doi.org/10.1142/S0218127420502338

    Article  MathSciNet  MATH  Google Scholar 

  39. Hu, G., Li, B.: Coupling chaotic system based on unit transform and its applications in image encryption. Sig. Process. 178, 107790 (2021). https://doi.org/10.1016/j.sigpro.2020.107790

    Article  Google Scholar 

  40. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica D 16(3), 285–317 (1985)

    Article  MathSciNet  Google Scholar 

  41. Fishman, G.S., Moore, L.R.: A statistical evaluation of multiplicative congruential random number generators with modulus \(2^{31}-1\). J. Am. Stat. Assoc. 77(377), 129–136 (1982). https://doi.org/10.1080/01621459.1982.10477775

    Article  MATH  Google Scholar 

  42. Bassham III, L.E., Rukhin, A.L., Soto, J., Nechvatal, J.R., Smid, M.E., Barker, E.B., Leigh, S.D., Levenson, M., Vangel, M., Banks, D.L., Heckert, N.A., Dray, J.F., Vo, S.: SP 800-22 Rev. 1a. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications. Tech. rep., National Institute of Standards & Technology, Gaithersburg, MD, United States (2010)

  43. Kocarev, L., Jakimoski, G., Stojanovski, T., Parlitz, U.: From chaotic maps to encryption schemes. In: Proceedings of the 1998 IEEE International Symposium on Circuits and Systems, ISCAS’98 (Cat. No. 98CH36187), vol. 4. IEEE, pp. 514–517 (1998)

  44. Chen, J., Chen, L., Zhou, Y.: Universal chosen-ciphertext attack for a family of image encryption schemes. IEEE Trans. Multimed. (2020). https://doi.org/10.1109/TMM.2020.3011315

    Article  Google Scholar 

  45. Wachs, M.L.: On q-derangement numbers. Proc. Am. Math. Soc. 106(1), 273–278 (1989)

    MathSciNet  MATH  Google Scholar 

  46. Wang, X., Liu, L., Zhang, Y.: A novel chaotic block image encryption algorithm based on dynamic random growth technique. Opt. Lasers Eng. 66, 10–18 (2015)

    Article  Google Scholar 

  47. Zhang, Y.Q., Wang, X.Y.: A symmetric image encryption algorithm based on mixed linear-nonlinear coupled map lattice. Inf. Sci. 273, 329–351 (2014). https://doi.org/10.1016/j.ins.2014.02.156

    Article  Google Scholar 

  48. Kahan, W.: IEEE standard 754 for binary floating-point arithmetic. Lecture Notes on the Status of IEEE 754(94720–1776), 11 (1996)

    Google Scholar 

  49. Wu, Y.: NPCR and UACI randomness tests for image encryption. Cyber J. (2011)

  50. Alawida, M., Teh, J.S., Samsudin, A., Alshoura, W.H.: An image encryption scheme based on hybridizing digital chaos and finite state machine. Sig. Process. 164, 249–266 (2019). https://doi.org/10.1016/j.sigpro.2019.06.013

    Article  MATH  Google Scholar 

  51. Hua, Z., Zhou, Y.: Image encryption using 2D Logistic-adjusted-Sine map. Inf. Sci. 339, 237–253 (2016). https://doi.org/10.1016/j.ins.2016.01.017

    Article  Google Scholar 

  52. Wu, Y., Zhou, Y., Saveriades, G., Agaian, S., Noonan, J.P., Natarajan, P.: Local Shannon entropy measure with statistical tests for image randomness. Inf. Sci. 222, 323–342 (2013). https://doi.org/10.1016/j.ins.2012.07.049

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baobin Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, G., Li, B. A uniform chaotic system with extended parameter range for image encryption. Nonlinear Dyn 103, 2819–2840 (2021). https://doi.org/10.1007/s11071-021-06228-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06228-2

Keywords

Navigation