Skip to main content
Log in

Relaxation oscillation and canard explosion in a slow–fast predator–prey model with Beddington–DeAngelis functional response

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we consider a predator–prey model with Beddington–DeAngelis functional response. Considering the predator’s rate of growth and death is much lower than that of prey’s, the model becomes a slow–fast system that mathematically leads to a singular perturbation problem. Using geometric singular perturbation theory due to Fenichel and blow up technique, we have investigated the system and obtained very rich and complicated dynamical phenomena including the existence of relaxation oscillation, canard cycles near the Hopf bifurcation point and the interesting phenomenon of canard explosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abrams, P., Walters, C.: Invulnerable prey and the statics and dynamics of predator–prey interactions. Ecology 77(1), 125-1 (1996)

    Google Scholar 

  2. Abrams, P.A., Ginzburg, L.R.: The nature of predation: prey dependent, ratio dependent or neither? Trends Ecol. Evol. 15(8), 337–341 (2000)

    Article  Google Scholar 

  3. Ai, S., Sadhu, S.: The entry-exit theorem and relaxation oscillations in slow-fast planar systems. J. Differ. Equ. 268(11), 7220–7249 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arnold, V.I., Afrajmovich, V., Il’yashenko, Y.S., Shil’nikov, L.: Dynamical Systems V: Bifurcation Theory and Catastrophe Theory, vol. 5. Springer Science & Business Media, Cham (2013)

    Google Scholar 

  5. Atabaigi, A., Barati, A.: Relaxation oscillations and canard explosion in a predator–prey system of holling and leslie types. Nonlinear Anal. Real World Appl. 36, 139–153 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baer, S.M., Erneux, T.: Singular Hopf bifurcation to relaxation oscillations. SIAM J. Appl. Math. 46(5), 721–739 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baer, S.M., Erneux, T.: Singular Hopf bifurcation to relaxation oscillations. ii. SIAM J. Appl. Math. 52(6), 1651–1664 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Beddington, J.R.: Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44, 331–340 (1975)

    Article  Google Scholar 

  9. Benoit, E.: Équations différentielles: relation entrée-sortie[Differential equations: The relation entering–leaving]. C.R. Acad. Sci. Paris ser. I. Math. 293(5), 293–296 (1981)

    MathSciNet  MATH  Google Scholar 

  10. Bold, K., Edwards, C., Guckenheimer, J., Guharay, S., Hoffman, K., Hubbard, J., Oliva, R., Weckesser, W.: The forced van der Pol equation ii: canards in the reduced system. SIAM J. Appl. Dyn. Syst. 2(4), 570–608 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Braaksma, B.: Singular Hopf bifurcation in systems with fast and slow variables. J. Nonlinear Sci. 8(5), 457–490 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Briggs, G.E., Haldane, J.B.S.: A note on the kinetics of enzyme action. Biochem. J. 19(2), 338 (1925)

    Article  Google Scholar 

  13. Brøns, M.: An iterative method for the canard explosion in general planar systems. In: Conference Publications, vol. 2013. American Institute of Mathematical Sciences, p. 77 (2013)

  14. Cantrell, R.S., Cosner, C.: On the dynamics of predator–prey models with the Beddington–Deangelis functional response. J. Math. Anal. Appl. 257(1), 206–222 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cosner, C., DeAngelis, D.L., Ault, J.S., Olson, D.B.: Effects of spatial grouping on the functional response of predators. Theor. Popul. Biol. 56(1), 65–75 (1999)

    Article  MATH  Google Scholar 

  16. DeAngelis, D.L., Goldstein, R., O’Neill, R.V.: A model for tropic interaction. Ecology 56(4), 881–892 (1975)

    Article  Google Scholar 

  17. Dumortier, F.: Local study of planar vector fields: singularities and their unfoldings. In: Studies in Mathematical Physics, vol. 2. Elsevier, pp. 161–241 (1991)

  18. Dumortier, F.: Techniques in the theory of local bifurcations: blow-up, normal forms, nilpotent bifurcations, singular perturbations. In: Bifurcations and Periodic Orbits of Vector Fields. Springer, pp. 19–73 (1993)

  19. Dumortier, F., Roussarie, R.: Geometric singular perturbation theory beyond normal hyperbolicity. In: Multiple-Time-Scale Dynamical Systems. Springer, pp. 29–63 (2001)

  20. Dumortier, F., Roussarie, R.: Multiple canard cycles in generalized liénard equations. J. Differ. Equ. 174(1), 1–29 (2001)

    Article  MATH  Google Scholar 

  21. Dumortier, F., Roussarie, R., Roussarie, R.H.: Canard Cycles and Center Manifolds, vol. 577. AMS, Providence (1996)

    MATH  Google Scholar 

  22. Fenichel, N.: Asymptotic stability with rate conditions. Indiana Univ. Math. J. 23(12), 1109–1137 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fenichel, N.: Asymptotic stability with rate conditions, ii. Indiana Univ. Math. J. 26(1), 81–93 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31(1), 53–98 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fenichel, N., Moser, J.: Persistence and smoothness of invariant manifolds for flows. Indiana Univ. Math. J. 21(3), 193–226 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  26. FitzHugh, R.: Mathematical models of threshold phenomena in the nerve membrane. Bull. Math. Biophys. 17(4), 257–278 (1955)

    Article  Google Scholar 

  27. Grasman, J.: Asymptotic Methods for Relaxation Oscillations and Applications, vol. 63. Springer Science & Business Media, Cham (2012)

    MATH  Google Scholar 

  28. Guckenheimer, J., Hoffman, K., Weckesser, W.: The forced van der Pol equation i: the slow flow and its bifurcations. SIAM J. Appl. Dyn. Syst. 2(1), 1–35 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Han, X., Bi, Q.: Slow passage through canard explosion and mixed-mode oscillations in the forced van der Pol’s equation. Nonlinear Dyn. 68(1–2), 275–283 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hek, G.: Geometric singular perturbation theory in biological practice. J. Math. Biol. 60(3), 347–386 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hsu, S.B., Shi, J.: Relaxation oscillation profile of limit cycle in predator–prey system. Discrete Contin. Dyn. Syst. B 11(4), 893 (2009)

    MathSciNet  MATH  Google Scholar 

  32. Hsu, T.H., Ruan, S.: Relaxation oscillations and the entry-exit function in multi-dimensional slow–fast systems. arXiv preprint arXiv:1910.06318 (2019)

  33. Hwang, T.W.: Global analysis of the predator–prey system with Beddington–Deangelis functional response. J. Math. Anal. Appl. 281(1), 395–401 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hwang, T.W.: Uniqueness of limit cycles of the predator–prey system with Beddington–Deangelis functional response. J. Math. Anal. Appl. 290(1), 113–122 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Jones, C.K.: Geometric singular perturbation theory. In: Dynamical Systems. Springer, pp. 44–118 (1995)

  36. Kooi, B., Poggiale, J.: Modelling, singular perturbation and bifurcation analyses of bitrophic food chains. Math. Biosci. 301, 93–110 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kristiansen, K.U.: Geometric singular perturbation analysis of a dynamical target mediated drug disposition model. J. Math. Biol. 79(1), 187–222 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. Krupa, M., Popović, N., Kopell, N.: Mixed-mode oscillations in three time-scale systems: a prototypical example. SIAM J. Appl. Dyn. Syst. 7(2), 361–420 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Krupa, M., Szmolyan, P.: Extending geometric singular perturbation theory to nonhyperbolic points–fold and canard points in two dimensions. SIAM J. Math. Anal. 33(2), 286–314 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  40. Krupa, M., Szmolyan, P.: Extending slow manifolds near transcritical and pitchfork singularities. Nonlinearity 14(6), 1473 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  41. Krupa, M., Szmolyan, P.: Relaxation oscillation and canard explosion. J. Differ. Equ. 174(2), 312–368 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kuehn, C.: Multiple Time Scale Dynamics, vol. 191. Springer, Belin (2015)

    Book  MATH  Google Scholar 

  43. Kuwamura, M., Chiba, H.: Mixed-mode oscillations and chaos in a prey–predator system with dormancy of predators. Chaos Interdiscip. J. Nonlinear Sci. 19(4), 043121 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. Larter, R., Steinmetz, C.G., Aguda, B.D.: Fast–slow variable analysis of the transition to mixed-mode oscillations and chaos in the peroxidase reaction. J. Chem. Phys. 89(10), 6506–6514 (1988)

    Article  Google Scholar 

  45. Li, C., Zhu, H.: Canard cycles for predator–prey systems with Holling types of functional response. J. Differ. Equ. 254(2), 879–910 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. Li, J., Quan, T., Zhang, W.: Bifurcation and number of subharmonic solutions of a 4d non-autonomous slow–fast system and its application. Nonlinear Dyn. 92(2), 721–739 (2018)

    Article  MATH  Google Scholar 

  47. Liu, S., Beretta, E.: A stage-structured predator–prey model of Beddington–Deangelis type. SIAM J. Appl. Math. 66(4), 1101–1129 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  48. Milik, A., Szmolyan, P.: Multiple time scales and canards in a chemical oscillator. In: Multiple-Time-Scale Dynamical Systems. Springer, pp. 117–140 (2001)

  49. Muratori, S., Rinaldi, S.: Remarks on competitive coexistence. SIAM J. Appl. Math. 49(5), 1462–1472 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  50. Perko, L.: Differential Equations and Dynamical Systems, vol. 7. Springer Science & Business Media, Cham (2013)

    MATH  Google Scholar 

  51. Pinto, C.M.: Exciting dynamical behavior in a network of two coupled rings of Chen oscillators. Nonlinear Dyn. 78(2), 1245–1259 (2014)

    Article  MathSciNet  Google Scholar 

  52. Rankin, J., Desroches, M., Krauskopf, B., Lowenberg, M.: Canard cycles in aircraft ground dynamics. Nonlinear Dyn. 66(4), 681–688 (2011)

    Article  Google Scholar 

  53. Ruxton, G., Gurney, W., De Roos, A.: Interference and generation cycles. Theor. Popul. Biol. 42(3), 235–253 (1992)

    Article  MATH  Google Scholar 

  54. Sadhu, S.: Mixed-mode oscillations and chaotic dynamics near singular Hopf bifurcation in a two time-scale ecosystem. arXiv preprint arXiv:1901.02974 (2019)

  55. Skalski, G.T., Gilliam, J.F.: Functional responses with predator interference: viable alternatives to the Holling type ii model. Ecology 82(11), 3083–3092 (2001)

    Article  Google Scholar 

  56. Szmolyan, P., Wechselberger, M.: Canards in \(\mathbb{R}^3\). J. Differ. Equ. 177(2), 419–453 (2001)

    Article  MATH  Google Scholar 

  57. Szmolyan, P., Wechselberger, M.: Relaxation oscillations in r3. J. Differ. Equ. 200(1), 69–104 (2004)

    Article  MATH  Google Scholar 

  58. Vakakis, A.F.: Relaxation oscillations, subharmonic orbits and chaos in the dynamics of a linear lattice with a local essentially nonlinear attachment. Nonlinear Dyn. 61(3), 443–463 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  59. Van der Pol, B.: A theory of the amplitude of free and forced triode vibrations. Radio Rev. 1, 701–710 (1920)

    Google Scholar 

  60. Van der Pol, B.: On “relaxation-oscillations”. Lond. Edinb. Dublin Phil. Mag. J. Sci. 2(11), 978–992 (1926)

    Article  Google Scholar 

  61. Verhulst, F.: Singular perturbation methods for slow–fast dynamics. Nonlinear Dyn. 50(4), 747–753 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  62. Wechselberger, M.: Existence and bifurcation of canards in \(\mathbb{R}^{3}\) in the case of a folded node. SIAM J. Appl. Dyn. Syst. 4(1), 101–139 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  63. Xia, Y., Zhang, Z., Bi, Q.: Relaxation oscillations and the mechanism in a periodically excited vector field with pitchfork-Hopf bifurcation. Nonlinear Dyn. 101(1), 37–51 (2020)

    Article  Google Scholar 

  64. Yaru, L., Shenquan, L.: Canard-induced mixed-mode oscillations and bifurcation analysis in a reduced 3D pyramidal cell model. Nonlinear Dyn. 101(1), 531–567 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their deep sense of gratitude and profuse appreciation to Tamás Kalmár-Nagy, Subject Editors, Nonlinear Dynamics for providing valuable suggestions. The authors also express their sincere thanks and heartfelt gratitude to the learned anonymous reviewers for carefully reading the manuscript and providing insightful comments and suggestions, which greatly improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malay Banerjee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

The First Lyapunov Coefficient Adopting the procedure discussed in [50], we now compute the first Lyapunov coefficient in order to study the stability of Hopf-bifurcating periodic solution. Translating the equilibrium point \((X_{2\epsilon },Y_{2\epsilon })\) of the system (49) into the origin by using the change of variables \(u=X_2-X_{2\epsilon }, v=Y_2-Y_{2\epsilon }\) and expanding the reduced system by Taylor’s series about \((u, v) = (0, 0)\), we obtain

$$\begin{aligned} \frac{d\mathrm{u}}{\mathrm{d}t}&=\alpha _1 u+\alpha _2v+\alpha _3 u^2+\alpha _4v^2+\alpha _5 uv+\alpha _6 u^3, \end{aligned}$$
(69)
$$\begin{aligned} \frac{\mathrm{d}v}{\mathrm{d}t}&=\beta _1 u+\beta _2 v+\beta _3 u^2, \end{aligned}$$
(70)

where \(\alpha _1=-a_5\sqrt{\epsilon }+{\mathcal {O}}(2)\), \(\alpha _2=-b_1+{\mathcal {O}}(2)\), \(\alpha _3=-b_2+{\mathcal {O}}(2)\), \(\alpha _4=0\), \(\alpha _5=-a_2\sqrt{\epsilon }\), \(\alpha _6=a_3\sqrt{\epsilon }\), \(\beta _1=b_3+{\mathcal {O}}(2)\), \(\beta _2=a_5\sqrt{\epsilon }\), \(\beta _3=a_4\sqrt{\epsilon }\).

Here, all the coefficients are evaluated at \(\lambda =\lambda _2^*\) or \(\left( \lambda =\lambda _H(\sqrt{\epsilon })=-\frac{a_5b_3}{2b_2x_*y_*}\epsilon +{\mathcal {O}}(\epsilon ^{3/2})\right) .\)

Hence, it follows that at \(\lambda =\lambda _H(\sqrt{\epsilon })\), \(\alpha _1+\beta _2=0\) and also \(\alpha '_1(\lambda _H)+\beta '_2(\lambda _H)=\frac{2b_2}{b_3}x_*y_*\ne 0\). We assume that \(\alpha _1(\lambda _H)\beta _2(\lambda _H)-\alpha _2(\lambda _H)\beta _1(\lambda _H)=b_1b_3+{\mathcal {O}}(2)>0\).

Now following [50], the first Lyapunov coefficient \(l_1\), for a general system of the form

$$\begin{aligned} {\dot{x}}&=ax+by+{\mathcal {O}}(2)=\rho (x,y) \end{aligned}$$
(71)
$$\begin{aligned} {\dot{y}}&=cx+dy+{\mathcal {O}}(2)=\zeta (x,y) \end{aligned}$$
(72)

where the above-mentioned conditions are satisfied is given by

$$\begin{aligned} \begin{aligned} l_1&=\frac{-3\pi }{2b{\omega _0}^\frac{3}{2}}\Big \{\Big [ac\left( \rho _{xy}^2+\rho _{xy}\zeta _{yy}+\rho _{yy}\zeta _{xy}\right) \\&\quad +ab\left( \zeta _{xy}^2+\rho _{xx}\zeta _{xy}+\rho _{xy}\zeta _{yy}\right) \\&\quad +\,c^2\left( \rho _{xy}\rho _{yy}+2\rho _{yy}\zeta _{yy}\right) -2ac\left( \zeta _{yy}^2-\rho _{xx}\rho _{yy}\right) \\&\quad -2ab\left( \rho _{xx}^2 -\zeta _{xx}\zeta _{yy}\right) -\,b^2\left( \zeta _{xy}\zeta _{xx}+2\rho _{xx}\zeta _{xx}\right) \\&\quad \left. +\left( bc-2a^2\right) \left( \zeta _{xy}\zeta _{yy}-\rho _{xy}\rho _{xx}\right) \right] \\&\quad -\left( a^2+bc\right) \left[ 3\left( c\zeta _{yyy}-b\rho _{xxx}\right) \right. \\&\quad +2a\left( \rho _{xxy}+\zeta _{xyy}\right) +\left( c\rho _{xyy}-b\zeta _{xxy}\right) \Big ]\Big \} \end{aligned} \end{aligned}$$
(73)

evaluated at the critical parameter value where the above conditions are satisfied, \(\pm i\omega _0\) are being the eigenvalues of the Jacobian matrix. Hence, in our case following the above result, on simplification, the first Lyapunov coefficient \(l_1\) is given by

$$\begin{aligned} l_1=\frac{3\pi }{(b_1b_3)^\frac{3}{2}}A\sqrt{\epsilon }+{\mathcal {O}}(\epsilon ) \end{aligned}$$
(74)

where \(A=a_2b_2b_3+4a_4b_1b_2-4a_5b_2^2+9a_3b_1b_3\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, T., Pal, P.J. & Banerjee, M. Relaxation oscillation and canard explosion in a slow–fast predator–prey model with Beddington–DeAngelis functional response. Nonlinear Dyn 103, 1195–1217 (2021). https://doi.org/10.1007/s11071-020-06140-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06140-1

Keywords

Navigation