Skip to main content
Log in

A dynamic time-varying reliability model for linear guides considering wear degradation

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper devotes to providing a dynamic reliability model for linear guideways for the whole life. Since a linear guide is always worn, the wear degradation of the linear guide is established. Moreover, the profile error of rail is considered. To get the dynamic behavior of linear guides precisely, we developed a dynamic stiffness model of the system in terms of different load conditions and operation time. The reliability model with variant stochastic parameters is proposed according to the contact characteristics of linear guides. The Monte Carlo method is adopted to solve the reliability of linear guides. The simulation results show the reliability curve agrees with the experimental results, as well as the engineering experience in practice. The proposed model can be well applied to the reliability prediction for linear guideways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Hwang, J., Park, C.-H., Gao, W., Kim, S.-W.: A three-probe system for measuring the parallelism and straightness of a pair of rails for ultra-precision guideways. Int. J. Mach. Tools Manuf. 47(7), 1053–1058 (2007). https://doi.org/10.1016/j.ijmachtools.2006.10.003

    Article  Google Scholar 

  2. Zha, J., Xue, F., Chen, Y.: Straightness error modeling and compensation for gantry type open hydrostatic guideways in grinding machine. Int. J. Mach. Tools Manuf. 112, 1–6 (2017). https://doi.org/10.1016/j.ijmachtools.2016.10.002

    Article  Google Scholar 

  3. Zha, J., Chen, Y., Wang, Z.: A tolerance design method for hydrostatic guideways motion accuracy based on error averaging effect. Procedia CIRP 75, 196–201 (2018). https://doi.org/10.1016/j.procir.2018.04.054

    Article  Google Scholar 

  4. Wang, Z., Zhao, W., Chen, Y., Lu, B.: Prediction of the effect of speed on motion errors in hydrostatic guideways. Int. J. Mach. Tools Manuf. 64, 78–84 (2013). https://doi.org/10.1016/j.ijmachtools.2012.07.011

    Article  Google Scholar 

  5. Majda, P.: Modeling of geometric errors of linear guideway and their influence on joint kinematic error in machine tools. Precision Eng. 36(3), 369–378 (2012). https://doi.org/10.1016/j.precisioneng.2012.02.001

    Article  Google Scholar 

  6. Tong, V.-C., Kwon, S.-W., Hong, S.-W.: Modeling of moving table with linear roller guides subjected to geometric errors in guide rails. Int. J. Mach. Tools Manuf. 21(10), 1903–1919 (2020). https://doi.org/10.1007/s12541-020-00394-w

    Article  Google Scholar 

  7. Fan, K.-C., Chen, H.-M., Kuo, T.-H.: Prediction of machining accuracy degradation of machine tools. Precision Eng. 36(2), 288–298 (2012). https://doi.org/10.1016/j.precisioneng.2011.11.002

    Article  Google Scholar 

  8. Tang, H., Duan, J.-A., Zhao, Q.: A systematic approach on analyzing the relationship between straightness & angular errors and guideway surface in precise linear stage. Int. J. Mach. Tools Manuf. 120, 12–19 (2017). https://doi.org/10.1016/j.ijmachtools.2017.04.010

    Article  Google Scholar 

  9. Yong-Sub, Y., Kim, Y.Y., Choi, J.S., Yoo, J., Lee, D.J., Lee, S.W., Lee, S.J.: Dynamic analysis of a linear motion guide having rolling elements for precision positioning devices. J. Mech. Sci. Technol. 22(1), 50–60 (2008). https://doi.org/10.1007/s12206-007-1006-9

    Article  Google Scholar 

  10. Kong, X., Sun, W., Wang, B., Wen, B.: Dynamic and stability analysis of the linear guide with time-varying, piecewise-nonlinear stiffness by multi-term incremental harmonic balance method. J. Sound Vib. 346, 265–283 (2015). https://doi.org/10.1016/j.jsv.2015.02.021

    Article  Google Scholar 

  11. Sakai, Y., Tanaka, T.: Influence of lubricant on nonlinear vibration characteristics of linear rolling guideway. Tribol. Int. (2019). https://doi.org/10.1016/j.triboint.2019.106124

    Article  Google Scholar 

  12. Li, C., Xu, M., He, G., Zhang, H., Liu, Z., He, D., Zhang, Y.: Time-dependent nonlinear dynamic model for linear guideway with crowning. Tribol. Int. 151, 106413 (2020). https://doi.org/10.1016/j.triboint.2020.106413

    Article  Google Scholar 

  13. Wang, W., Zhou, Y., Wang, H., Li, C., Zhang, Y.: Vibration analysis of a coupled feed system with nonlinear kinematic joints. Mech. Mach. Theory 134, 562–581 (2019). https://doi.org/10.1016/j.mechmachtheory.2019.01.014

    Article  Google Scholar 

  14. Hung, J.P.: Load effect on the vibration characteristics of a stage with rolling guides. J. Mech. Sci. Technol. 23(1), 89–99 (2009). https://doi.org/10.1007/s12206-008-0925-4

    Article  Google Scholar 

  15. Miura, T., Matsubara, A., Yamaji, I., Hoshide, K.: Measurement and analysis of friction fluctuations in linear guideways. CIRP Ann. 67(1), 393–396 (2018). https://doi.org/10.1016/j.cirp.2018.04.010

    Article  Google Scholar 

  16. Oh, K.-J., Khim, G., Park, C.-H., Chung, S.-C.: Explicit modeling and investigation of friction forces in linear motion ball guides. Tribol. Int. 129, 16–28 (2019). https://doi.org/10.1016/j.triboint.2018.07.046

    Article  Google Scholar 

  17. Xz, W., Xu, X., Li, X., He, X., Tian Hongliang, K.: Mixed lubrication of a linear motion rolling guideway pair. J. Vib. Shock 39(09), 260–266 (2020)

    Google Scholar 

  18. Gu, J., Zhang, Y.: Dynamic analysis of a ball screw feed system with time-varying and piecewise-nonlinear stiffness. Proc. Inst. Mech. Eng. Part C J Mech. Eng. Sci. 233(18), 6503–6518 (2019). https://doi.org/10.1177/0954406219865923

    Article  Google Scholar 

  19. Tong, V.-C., Khim, G., Hong, S.-W., Park, C.-H.: Construction and validation of a theoretical model of the stiffness matrix of a linear ball guide with consideration of carriage flexibility. Mech. Mach. Theory 140, 123–143 (2019). https://doi.org/10.1016/j.mechmachtheory.2019.05.021

    Article  Google Scholar 

  20. Yuan Lin, C., Pin Hung, J., Liang Lo, T.: Effect of preload of linear guides on dynamic characteristics of a vertical column–spindle system. Int. J. Mach. Tools Manuf. 50(8), 741–746 (2010). https://doi.org/10.1016/j.ijmachtools.2010.04.002

    Article  Google Scholar 

  21. Jiang, S., Wang, Y., Wang, Y.: Modeling of static stiffness for linear motion roller guide. J. Tribol. (2019). https://doi.org/10.1115/1.4044292

    Article  Google Scholar 

  22. Wang, W., Li, C.Y., Zhou, Y.X., Wang, H., Zhang, Y.M.: Nonlinear dynamic analysis for machine tool table system mounted on linear guides. Nonlinear Dyn. 94(3), 2033–2045 (2018). https://doi.org/10.1007/s11071-018-4473-x

    Article  Google Scholar 

  23. Wang, W., Zhang, Y., Li, C.: Dynamic reliability analysis of linear guides in positioning precision. Mech. Mach. Theory 116, 451–464 (2017). https://doi.org/10.1016/j.mechmachtheory.2017.06.011

    Article  Google Scholar 

  24. Tao, W., Zhong, Y., Feng, H., Wang, Y.: Model for wear prediction of roller linear guides. Wear 305(1), 260–266 (2013). https://doi.org/10.1016/j.wear.2013.01.047

    Article  Google Scholar 

  25. Wei, W., Yimin, Z., Changyou, L., Hao, W., Yanxun, Z.: Effects of wear on dynamic characteristics and stability of linear guides. Meccanica 52(11), 2899–2913 (2017). https://doi.org/10.1007/s11012-016-0605-x

    Article  MathSciNet  Google Scholar 

  26. Zou, H.T., Wang, B.L.: Investigation of the contact stiffness variation of linear rolling guides due to the effects of friction and wear during operation. Tribol. Int. 92, 472–484 (2015). https://doi.org/10.1016/j.triboint.2015.07.005

    Article  Google Scholar 

  27. Gu, J., Agapiou, J.S., Kurgin, S.: CNC machine tool work offset error compensation method. J. Manuf. Syst. 37, 576–585 (2015). https://doi.org/10.1016/j.jmsy.2015.04.001

    Article  Google Scholar 

  28. Kuanmin, M.A.O., Can, G.O.N.G., Bing, L.I., Ming, Z.: Dynamic modeling research of linear motion ball guide considering surface waviness. J. Huazhong Univ. Sci. Technol. 42(6), 1–5 (2014)

    Google Scholar 

  29. Chengwei, W., Linqing, Z.: Effect of waviness and roughness on lubricated wear related to running-in. Wear 147(2), 323–334 (1991). https://doi.org/10.1016/0043-1648(91)90189-2

    Article  Google Scholar 

  30. Liu, J., Wu, H., Shao, Y.: A comparative study of surface waviness models for predicting vibrations of a ball bearing. Sci. China Technol. Sci. 60(12), 1841–1852 (2017). https://doi.org/10.1007/s11431-017-9110-3

    Article  Google Scholar 

  31. Li, M., Yu, H., Li, D., Wang, B., Zhang, G.: Modeling for dynamic contact angle of ball screw mechanism aimed to structural parameters. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering 32(4), 98–104 (2016). https://doi.org/10.11975/j.issn.1002-6819.2016.04.014

    Article  Google Scholar 

  32. Yu, H., Ran, Y., Zhang, G., Li, X., Li, B.: A time-varying comprehensive dynamic model for the rotor system with multiple bearing faults. J. Sound Vib. 488, 115650 (2020). https://doi.org/10.1016/j.jsv.2020.115650

    Article  Google Scholar 

  33. Zhang, Y., Wen, B., Liu, Q.: First passage of uncertain single degree-of-freedom nonlinear oscillators. Comput. Methods Appl. Mech. Eng. 165(1), 223–231 (1998). https://doi.org/10.1016/S0045-7825(98)00042-5

    Article  MATH  Google Scholar 

  34. Guida, M., Pulcini, G.: Reliability analysis of mechanical systems with bounded and bathtub shaped intensity function. IEEE Trans. Reliab. 58(3), 432–443 (2009). https://doi.org/10.1109/TR.2009.2026690

    Article  Google Scholar 

  35. Sun, W., Kong, X., Wang, B., Li, X.: Statics modeling and analysis of linear rolling guideway considering rolling balls contact. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 229(1), 168–179 (2014). https://doi.org/10.1177/0954406214531943

    Article  Google Scholar 

  36. Tu, G., Tao, W., Feng, H., Yin, A.: Reliability test method of overloaded linear rolling guide vice based on stepping loading [J]. Mach. Tool Hydraul. 40(05), 47 (2012)

    Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51835001) and the National Major Scientific and Technological Special Project for “High-grade CNC and Basic Manufacturing Equipment” of China (Grant No. 2018ZX04032-001).

Author information

Authors and Affiliations

Authors

Contributions

Hui Yu conceived the study and wrote the manuscript; Yan Ran and Genbao Zhang supervised and reviewed the manuscript; Guangqi Ying helped to collect and analyze the data. All authors read and approved the manuscript.

Corresponding author

Correspondence to Yan Ran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Ran, Y., Zhang, G. et al. A dynamic time-varying reliability model for linear guides considering wear degradation. Nonlinear Dyn 103, 699–714 (2021). https://doi.org/10.1007/s11071-020-06139-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06139-8

Keywords

Navigation