Skip to main content
Log in

Conservative chaos and invariant tori in the modified Sprott A system

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Generally, there are few volume-conservative but not energy-conservative chaotic systems in the literature. By recomposing the skew-symmetric state matrix of the Sprott A system, a new volume-conservative chaotic system is coined in this paper. We mainly focus on investigating its dynamical behaviors that relay on the external excitation k, which directly determines the number of equilibria of the system. Without k, there exist two lines of equilibria that can be degenerated into two or four equilibria for the given nonzero initial conditions, while with k, the system is a no-equilibrium system that can produce conservative chaos and invariant tori for different initial conditions. Moreover, these rich dynamical behaviors are illustrated by several numerical techniques including time series, phase portraits, Poincaré sections, bifurcation diagrams and Lyapunov exponents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130 (1963)

    Article  MathSciNet  Google Scholar 

  2. Aguilar-López, R., Martínez-Guerra, R., Perez-Pinacho, C.A.: Nonlinear observer for synchronization of chaotic systems with application to secure data transmission. Eur. Phys. J. Spec. Top. 223(8), 1541 (2014)

    Article  Google Scholar 

  3. Maldacena, J., Shenker, S.H., Stanford, D.: A bound on chaos. J. High Energy Phys. 2016(8), 106 (2016)

    Article  MathSciNet  Google Scholar 

  4. Sciamanna, M., Shore, K.A.: Physics and applications of laser diode chaos. Nat. Photonics 9(3), 151 (2015)

    Article  Google Scholar 

  5. Frye, M.D., Morita, M., Vaillant, C.L., Green, D.G., Hutson, J.M.: Approach to chaos in ultracold atomic and molecular physics: statistics of near-threshold bound states for Li+ CaH and Li+ CaF. Phys. Rev. A 93(5), 052713 (2016)

    Article  Google Scholar 

  6. Blagojević, S., Čupić, Ž., Ivanović-Šašić, A., Kolar-Anić, L.: Mixed-mode oscillations and chaos in return maps of an oscillatory chemical reaction. Russ. J. Phys. Chem. A 89(13), 2349 (2015)

    Article  Google Scholar 

  7. Khlebodarova, T.M., Kogai, V.V., Fadeev, S.I., Likhoshvai, V.A.: Chaos and hyperchaos in simple gene network with negative feedback and time delays. J. Bioinf. Comput. Biol. 15(2), 1650042 (2017)

    Article  Google Scholar 

  8. Salgado, R., Moore, H., Jwm, M., Lively, T., Malik, S., Mcdermott, U., Michiels, S., Moscow, J.A., Tejpar, S., Mckee, T.: Societal challenges of precision medicine: bringing order to chaos. Eur. J. Cancer 84, 325 (2017)

    Article  Google Scholar 

  9. Wagemans, J., Delcourt, S., Bielen, L., Moors, P.: On the edge of attractive chaos in a series of semi-abstract paintings by Lou Bielen. Art Percept. 5(4), 337 (2017)

    Article  Google Scholar 

  10. Wu, G.C., Baleanu, D.: Discrete chaos in fractional delayed logistic maps. Nonlinear Dyn. 80(4), 1697 (2015)

    Article  MathSciNet  Google Scholar 

  11. Matthews, R.: On the derivation of a chaotic encryption algorithm. Cryptologia 13(1), 29 (1989)

    Article  MathSciNet  Google Scholar 

  12. Habutsu, T., Nishio, Y., Sasase, I., Mori, S.: A secret key cryptosystem by iterating a chaotic map. In: Workshop on the Theory and Application of of Cryptographic Techniques, pp. 127–140. Springer (1991)

  13. Fraser, A.M., Swinney, H.L.: Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33(2), 1134 (1986)

    Article  MathSciNet  Google Scholar 

  14. Li, Y., Wang, C., Chen, H.: A hyper-chaos-based image encryption algorithm using pixel-level permutation and bit-level permutation. Opt. Lasers Eng. 90, 238 (2017)

    Article  Google Scholar 

  15. Yin, Q., Wang, C.: A new chaotic image encryption scheme using breadth-first search and dynamic diffusion. Int. J. Bifurc. Chaos 28(04), 1850047 (2018)

    Article  MathSciNet  Google Scholar 

  16. Ullah, A., Jamal, S.S., Shah, T.: A novel scheme for image encryption using substitution box and chaotic system. Nonlinear Dyn. 91(1), 359 (2018)

    Article  MathSciNet  Google Scholar 

  17. Özkaynak, F.: Brief review on application of nonlinear dynamics in image encryption. Nonlinear Dyn. 92(2), 305 (2018)

    Article  Google Scholar 

  18. Cheng, G., Wang, C., Chen, H.: A novel color image encryption algorithm based on hyperchaotic system and permutation-diffusion architecture. Int. J. Bifurc. Chaos 29(09), 1950115 (2019)

    Article  MathSciNet  Google Scholar 

  19. Zhang, Q., Zhang, H., Li, Z.: One-way hash function construction based on conservative chaotic systems. In: 2009 Fifth International Conference on Information Assurance and Security, vol. 2, pp. 402–405. IEEE (2009)

  20. Sprott, J.C.: Some simple chaotic flows. Phys. Rev. E 50(2), R647 (1994)

    Article  MathSciNet  Google Scholar 

  21. Messias, M., Reinol, A.C.: On the formation of hidden chaotic attractors and nested invariant tori in the Sprott A system. Nonlinear Dyn. 88(2), 807 (2017)

    Article  Google Scholar 

  22. Messias, M., Reinol, A.C.: On the existence of periodic orbits and KAM tori in the Sprott A system: a special case of the Nosé–Hoover oscillator. Nonlinear Dyn. 92(3), 1287 (2018)

    Article  Google Scholar 

  23. Hu, X., Liu, C., Ling, L., Ni, J., Li, S.: Multi-scroll hidden attractors in improved Sprott A system. Nonlinear Dyn. 86(3), 1725 (2016)

    Article  Google Scholar 

  24. Dong, E., Yuan, M., Du, S., Chen, Z.: A new class of Hamiltonian conservative chaotic systems with multistability and design of pseudo-random number generator. Appl. Math. Model. 73, 40 (2019)

    Article  MathSciNet  Google Scholar 

  25. Cang, S., Wu, A., Wang, Z., Chen, Z.: Distinguishing Lorenz and Chen systems based upon Hamiltonian energy theory. Int. J. Bifurc. Chaos 27(02), 1750024 (2017)

    Article  MathSciNet  Google Scholar 

  26. Cang, S., Li, Y., Wang, Z.: Single crystal-lattice-shaped chaotic and quasi-periodic flows with time-reversible symmetry. Int. J. Bifurc. Chaos 28(13), 1830044 (2018)

    Article  MathSciNet  Google Scholar 

  27. Sprott, J., Jafari, S., Pham, V.T., Hosseini, Z.S.: A chaotic system with a single unstable node. Phys. Lett. A 379(36), 2030 (2015)

    Article  MathSciNet  Google Scholar 

  28. Cang, S., Wu, A., Zhang, R., Wang, Z., Chen, Z.: Conservative chaos in a class of nonconservative systems: theoretical analysis and numerical demonstrations. Int. J. Bifurc. Chaos 28(07), 1850087 (2018)

    Article  MathSciNet  Google Scholar 

  29. Jafari, M.A., Mliki, E., Akgul, A., Pham, V.T., Kingni, S.T., Wang, X., Jafari, S.: Chameleon: the most hidden chaotic flow. Nonlinear Dyn. 88(3), 2303 (2017)

    Article  MathSciNet  Google Scholar 

  30. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica D 16(3), 285 (1985)

    Article  MathSciNet  Google Scholar 

  31. Kuznetsov, N., Leonov, G., Mokaev, T., Prasad, A., Shrimali, M.: Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system. Nonlinear Dyn. 92(2), 267 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partly supported by the National Natural Science Foundation of China (Grant No. 61873186), South African National Research Foundation (Grant Nos. 112142 and 112108), South African National Research Foundation Incentive Grant (No. 114911), and South African Eskom Tertiary Education Support Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shijian Cang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cang, S., Li, Y., Xue, W. et al. Conservative chaos and invariant tori in the modified Sprott A system. Nonlinear Dyn 99, 1699–1708 (2020). https://doi.org/10.1007/s11071-019-05385-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05385-9

Keywords

Navigation