Skip to main content
Log in

Dynamical behavior and network analysis of an extended Hindmarsh–Rose neuron model

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the extended Hindmarsh–Rose neuron model, which considers the slow intracellular exchange of calcium ions between its store and the cytoplasm, is studied. The dynamical behavior of this neuron model is analyzed by deriving the equilibrium points, the bifurcation diagrams, and the Lyapunov exponents, in the presence of an external forcing current. Furthermore, the dynamics of the network of the extended model is investigated. Firstly, a one-dimensional ring network is constructed, and the effects of the coupling strength and the forcing current are considered on the network behavior. The results confirm the existence of chimera state in small coupling strength values. Then, a square network of the proposed model is created by adding an external excitation to the neurons and four cases of different parameters are considered. Particularly, the effects of the stimulus parameters, the external current, and the coupling strength are studied on the emergence of spiral waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ma, J., Tang, J.: A review for dynamics of collective behaviors of network of neurons. Sci. China Technol. Sci. 58(12), 2038–2045 (2015)

    Article  Google Scholar 

  2. Ma, J., Tang, J.: A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 89(3), 1569–1578 (2017)

    Article  MathSciNet  Google Scholar 

  3. Hindmarsh, J.L., Rose, R.: A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. B 221(1222), 87–102 (1984)

    Article  Google Scholar 

  4. Houart, G., Dupont, G., Goldbeter, A.: Bursting, chaos and birhythmicity originating from self-modulation of the inositol 1, 4, 5-trisphosphate signal in a model for intracellular ca2+ oscillations. Bull. Math. Biol. 61(3), 507–530 (1999)

    Article  Google Scholar 

  5. Jun, D., Guang-jun, Z., Yong, X., Hong, Y., Jue, W.: Dynamic behavior analysis of fractional-order hindmarsh-rose neuronal model. Cognit. Neurodyn. 8(2), 167–175 (2014)

    Article  Google Scholar 

  6. Lakshmanan, S., Lim, C.P., Nahavandi, S., Prakash, M., Balasubramaniam, P.: Dynamical analysis of the hindmarsh-rose neuron with time delays. IEEE Trans. Neural Netw. Learn. Syst. 28(8), 1953–1958 (2017)

    Article  MathSciNet  Google Scholar 

  7. Lv, M., Ma, J.: Multiple modes of electrical activities in a new neuron model under electromagnetic radiation. Neurocomputing 205, 375–381 (2016)

    Article  Google Scholar 

  8. Panahi, S., Jafari, S., Khalaf, A.J.M., Rajagopal, K., Pham, V.-T., Alsaadi, F.E.: Complete dynamical analysis of a neuron under magnetic flow effect. Chin. J. Phys. 56(5), 2254–2264 (2018)

    Article  Google Scholar 

  9. Dtchetgnia Djeundam, S., Yamapi, R., Kofane, T., Aziz-Alaoui, M.: Deterministic and stochastic bifurcations in the hindmarsh-rose neuronal model. Chaos 23(3), 033125 (2013)

    Article  MathSciNet  Google Scholar 

  10. Parastesh, F., Rajagopal, K., Alsaadi, F.E., Hayat, T., Pham, V.-T., Hussain, I.: Birth and death of spiral waves in a network of hindmarsh-rose neurons with exponential magnetic flux and excitable media. Appl. Math. Comput. 354, 377–384 (2019)

    MathSciNet  Google Scholar 

  11. Qing-Yun, W., Qi-Shao, L.: Time delay-enhanced synchronization and regularization in two coupled chaotic neurons. Chin. Phys. Lett. 22(3), 543 (2005)

    Article  Google Scholar 

  12. Guo, S., Xu, Y., Wang, C., Jin, W., Hobiny, A., Ma, J.: Collective response, synapse coupling and field coupling in neuronal network. Chaos Solitons Fractals 105, 120–127 (2017)

    Article  MathSciNet  Google Scholar 

  13. Lv, M., Ma, J., Yao, Y., Alzahrani, F.: Synchronization and wave propagation in neuronal network under field coupling. Sci. China Technol. Sci. 62(3), 448–457 (2019)

    Article  Google Scholar 

  14. Xu, Y., Jia, Y., Ma, J., Alsaedi, A., Ahmad, B.: Synchronization between neurons coupled by memristor. Chaos Solitons Fractals 104, 435–442 (2017)

    Article  Google Scholar 

  15. Ma, J., Mi, L., Zhou, P., Xu, Y., Hayat, T.: Phase synchronization between two neurons induced by coupling of electromagnetic field. Appl. Math. Comput. 307, 321–328 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Ma, J., Wu, F., Wang, C.: Synchronization behaviors of coupled neurons under electromagnetic radiation. Int. J. Mod. Phys. B 31(2), 1650251 (2017)

    Article  MathSciNet  Google Scholar 

  17. Parastesh, F., Azarnoush, H., Jafari, S., Hatef, B., Perc, M., Repnik, R.: Synchronizability of two neurons with switching in the coupling. Appl. Math. Comput. 350, 217–223 (2019)

    MathSciNet  Google Scholar 

  18. Rakshit, S., Bera, B.K., Ghosh, D., Sinha, S.: Emergence of synchronization and regularity in firing patterns in time-varying neural hypernetworks. Phys. Rev. E 97(5), 052304 (2018)

    Article  Google Scholar 

  19. Shafiei, M., Parastesh, F., Jalili, M., Jafari, S., Perc, M., Slavinec, M.: Effects of partial time delays on synchronization patterns in izhikevich neuronal networks. Eur. Phys. J. B 92(2), 36 (2019)

    Article  Google Scholar 

  20. Zhang, X., Lv, X., Li, X.: Sampled-data-based lag synchronization of chaotic delayed neural networks with impulsive control. Nonlinear Dyn. 90(3), 2199–2207 (2017)

    Article  MathSciNet  Google Scholar 

  21. Wang, H., Wang, Q., Lu, Q., Zheng, Y.: Equilibrium analysis and phase synchronization of two coupled HR neurons with gap junction. Cognit. Neurodyn. 7(2), 121–131 (2013)

    Article  Google Scholar 

  22. Rakshit, S., Bera, B.K., Perc, M., Ghosh, D.: Basin stability for chimera states. Sci. Rep. 7(1), 2412 (2017)

    Article  Google Scholar 

  23. Wang, C., Ma, J.: A review and guidance for pattern selection in spatiotemporal system. Int. J. Mod. Phys. B 32(06), 1830003 (2018)

    Article  MathSciNet  Google Scholar 

  24. Bera, B.K., Majhi, S., Ghosh, D., Perc, M.: Chimera states: effects of different coupling topologies. Europhys. Lett. 118(1), 10001 (2017)

    Article  Google Scholar 

  25. Dudkowski, D., Maistrenko, Y., Kapitaniak, T.: Different types of chimera states: an interplay between spatial and dynamical chaos. Phys. Rev. E 90(3), 032920 (2014)

    Article  Google Scholar 

  26. Faghani, Z., Arab, Z., Parastesh, F., Jafari, S., Perc, M., Slavinec, M.: Effects of different initial conditions on the emergence of chimera states. Chaos Solitons Fractals 114, 306–311 (2018)

    Article  MathSciNet  Google Scholar 

  27. Parastesh, F., Jafari, S., Azarnoush, H., Hatef, B., Bountis, A.: Imperfect chimeras in a ring of four-dimensional simplified lorenz systems. Chaos Solitons Fractals 110, 203–208 (2018)

    Article  MathSciNet  Google Scholar 

  28. Majhi, S., Bera, B.K., Ghosh, D., Perc, M.: Chimera states in neuronal networks: a review. Phys. Life Rev. 28, 100–121 (2019)

    Article  Google Scholar 

  29. Omelchenko, I., Provata, A., Hizanidis, J., Schöll, E., Hövel, P.: Robustness of chimera states for coupled fitzhugh-nagumo oscillators. Phys. Rev. E 91(2), 022917 (2015)

    Article  MathSciNet  Google Scholar 

  30. Tang, J., Zhang, J., Ma, J., Luo, J.: Noise and delay sustained chimera state in small world neuronal network. Sci. China Technol. Sci. (2018) 1–7. https://doi.org/10.1007/s11431-017-9282-x

    Article  Google Scholar 

  31. Wei, Z., Parastesh, F., Azarnoush, H., Jafari, S., Ghosh, D., Perc, M., Slavinec, M.: Nonstationary chimeras in a neuronal network. Europhys. Lett. 123(4), 48003 (2018)

    Article  Google Scholar 

  32. Rostami, Z., Jafari, S.: Defects formation and spiral waves in a network of neurons in presence of electromagnetic induction. Cognit. Neurodyn. 12(2), 235–254 (2018)

    Article  Google Scholar 

  33. Rostami, Z., Rajagopal, K., Khalaf, A.J.M., Jafari, S., Perc, M., Slavinec, M.: Wavefront-obstacle interactions and the initiation of reentry in excitable media. Phys. A 509, 1162–1173 (2018)

    Article  Google Scholar 

  34. Deng, Y., Liu, B.Y., Wu, T., Shangguan, Y.Y., Ma, J., Tang, J.: Parametric wave induces straight drift of spiral waves in excitable medium. Europhys. Lett. 119(5), 58002 (2017)

    Article  Google Scholar 

  35. Verkhratsky, A.: Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol. Rev. 85(1), 201–279 (2005)

    Article  Google Scholar 

  36. Parekh, A.B., Putney Jr., J.W.: Store-operated calcium channels. Physiol. Rev. 85(2), 757–810 (2005)

    Article  Google Scholar 

  37. Vepa, R.: Modelling and estimation of chaotic biological neurons. IFAC Proc. Vol. 42(7), 27–32 (2009)

    Article  Google Scholar 

  38. Giresse, T.A., Crepin, K.T., Martin, T.: Generalized synchronization of the extended hindmarsh-rose neuronal model with fractional order derivative. Chaos Solitons Fractals 118, 311–319 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajad Jafari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajagopal, K., Khalaf, A.J.M., Parastesh, F. et al. Dynamical behavior and network analysis of an extended Hindmarsh–Rose neuron model. Nonlinear Dyn 98, 477–487 (2019). https://doi.org/10.1007/s11071-019-05205-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05205-0

Keywords

Navigation