Skip to main content
Log in

A novel family of controllably dissipative composite integration algorithms for structural dynamic analysis

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a new family of controllably dissipative composite algorithms is developed to obtain reliable numerical response of structural dynamic problems. The proposed algorithm is a self-starting, unconditionally stable and second-order accurate three sub-step composite algorithm. The new method includes two optimal sub-families of algorithms, both of which can control numerical dissipations in the high-frequency range by an intuitive way, and their numerical dissipations can range from the non-dissipative case to the asymptotic annihilating case. Besides, they actually involve only one free parameter and always share the identical effective stiffness matrices inside three sub-step to save the computational cost, which does not hold in some existing sub-step algorithms. Some numerical examples are given to show the superiority of the new algorithm with respect to controllable numerical dissipations and the ability of capturing the free-play nonlinearity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61

Similar content being viewed by others

References

  1. Bathe, K.J.: Conserving energy and momentum in nonlinear dynamics: a simple implicit time integration scheme. Comput. Struct. 85(78), 437–445 (2007)

    Article  MathSciNet  Google Scholar 

  2. Bathe, K.J., Baig, M.M.I.: On a composite implicit time integration procedure for nonlinear dynamics. Comput. Struct. 83(31–32), 2513–2524 (2005)

    Article  MathSciNet  Google Scholar 

  3. Bathe, K.J., Noh, G.: Insight into an implicit time integration scheme for structural dynamics. Comput. Struct. 98–99, 1–6 (2012)

    Article  Google Scholar 

  4. Bentez, J.M., Montns, F.J.: The value of numerical amplification matrices in time integration methods. Comput. Struct. 128(5), 243–250 (2013)

    Article  Google Scholar 

  5. Chandra, Y., Zhou, Y., Stanciulescu, I., Eason, T., Spottswood, S.: A robust composite time integration scheme for snap-through problems. Comput. Mech. 55(5), 1041–1056 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chang, S.Y.: Explicit pseudodynamic algorithm with unconditional stability. J. Eng. Mech. 128(9), 935–947 (2002)

    Article  Google Scholar 

  7. Chang, S.Y.: A new family of explicit methods for linear structural dynamics. Comput. Struct. 88(1112), 755–772 (2010)

    Article  Google Scholar 

  8. Chang, S.Y.: A family of noniterative integration methods with desired numerical dissipation. Int. J. Numer. Methods Eng. 100(1), 62–86 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chang, S.Y.: Dissipative, noniterative integration algorithms with unconditional stability for mildly nonlinear structural dynamic problems. Nonlinear Dyn. 79(2), 1625–1649 (2015)

    Article  Google Scholar 

  10. Chopra, A.K.: Dynamics of Structures: Theory and Applications to Earthquake Engineering. Prentice-Hall International Series in Civil Engineering and Engineering Mechanics, 4th edn. Prentice Hall, Upper Saddle River (2011)

    Google Scholar 

  11. Chung, J., Hulbert, G.M.: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha \) method. J. Appl. Mech. 60(2), 371–375 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dong, S.: BDF-like methods for nonlinear dynamic analysis. J. Comput. Phys. 229(8), 3019–3045 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Erlicher, S., Bonaventura, L., Bursi, O.S.: The analysis of the generalized-method for non-linear dynamic problems. Comput. Mech. 28(2), 83–104 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gear, C.W.: Numerical Initial Value Problems in Ordinary Differential Equations. Prentice Hall, Upper Saddle River (1971)

    MATH  Google Scholar 

  15. Grosseholz, G., Soares Jr., D., Von Estorff, O.: A stabilized central difference scheme for dynamic analysis. Int. J. Numer. Methods Eng. 102(11), 1750–1760 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hilber, H.M., Hughes, T.J.R.: Collocation, dissipation and overshoot for time integration schemes in structural dynamics. Earthq. Eng. Struct. Dyn. 6(1), 99–117 (1978)

    Article  Google Scholar 

  17. Hilber, H.M., Hughes, T.J.R., Taylor, R.L.: Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq. Eng. Struct. Dyn. 5(3), 283–292 (1977)

    Article  Google Scholar 

  18. Hoff, C., Pahl, P.J.: Development of an implicit method with numerical dissipation for time integration algorithms in structural dynamics. Comput. Methods Appl. Mech. Eng. 67(3), 367–385 (1988)

    Article  MATH  Google Scholar 

  19. Houbolt, J.C.: A recurrence matrix solution for the dynamic response of elastic aircraft. J. Aeronaut. Sci. 17(9), 540–550 (1950)

    Article  MathSciNet  Google Scholar 

  20. Hughes, T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover Civil and Mechanical Engineering. Dover Publications, Mineola (2000)

    Google Scholar 

  21. Kim, W., Choi, S.Y.: An improved implicit time integration algorithm: the generalized composite time integration algorithm. Comput. Struct. 196, 341–354 (2018)

    Article  Google Scholar 

  22. Kim, W., Reddy, J.N.: An improved time integration algorithm: a collocation time finite element approach. Int. J. Struct. Stab. Dyn. 17(2), 1750024 (2016)

    Article  MathSciNet  Google Scholar 

  23. Kim, W., Reddy, J.N.: A new family of higher-order time integration algorithms for the analysis of structural dynamics. J. Appl. Mech. ASME 84(7), 071008–17 (2017)

    Article  Google Scholar 

  24. Klarmann, S., Wagner, W.: Enhanced studies on a composite time integration scheme in linear and non-linear dynamics. Comput. Mech. 55(3), 455–468 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kolay, C., Ricles, J.M.: Assessment of explicit and semi-explicit classes of model-based algorithms for direct integration in structural dynamics. Int. J. Numer. Methods Eng. 107(1), 49–73 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kuran, B., Özgüven, H.N.: A modal superposition method for non-linear structures. J. Sound Vib. 189(3), 315–339 (1996)

    Article  Google Scholar 

  27. Li, J., Yu, K.: Noniterative integration algorithms with controllable numerical dissipations for structural dynamics. Int. J. Comput. Methods 15(3), 52 (2018)

    MATH  Google Scholar 

  28. Li, J., Yu, K.: An alternative to the Bathe algorithm. Appl. Math. Model. 69, 255–272 (2019)

    Article  MathSciNet  Google Scholar 

  29. Li, J., Yu, K., Li, X.: A generalized structure-dependent semi-explicit method for structural dynamics. J. Comput. Nonlinear Dyn. 13(11), 111008–20 (2018)

    Article  Google Scholar 

  30. Newmark, N.M.: A method of computation for structural dynamics. J. Eng. Mech. Div. 85(3), 67–94 (1959)

    Google Scholar 

  31. Noh, G., Bathe, K.J.: Further insights into an implicit time integration scheme for structural dynamics. Comput. Struct. 202, 15–24 (2018)

    Article  Google Scholar 

  32. Noh, G., Ham, S., Bathe, K.J.: Performance of an implicit time integration scheme in the analysis of wave propagations. Comput. Struct. 123, 93–105 (2013)

    Article  Google Scholar 

  33. Rezaiee-Pajand, M., Karimi-Rad, M.: More accurate and stable time integration scheme. Eng. Comput. 31(4), 791–812 (2015)

    Article  Google Scholar 

  34. Rezaiee-Pajand, M., Sarafrazi, S.R.: A mixed and multi-step higher-order implicit time integration family. Arch. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 1989–1996 (vols 203–210) 1(1), 1–12 (2010)

    Google Scholar 

  35. Soares, D., Großeholz, G.: Nonlinear structural dynamic analysis by a stabilized central difference method. Eng. Struct. 173, 383–392 (2018)

    Article  Google Scholar 

  36. Wen, W.B., Wei, K., Lei, H.S., Duan, S.Y., Fang, D.N.: A novel sub-step composite implicit time integration scheme for structural dynamics. Comput. Struct. 182, 176–186 (2017)

    Article  Google Scholar 

  37. Wilson, E.L.: A Computer Program for the Dynamic Stress Analysis of Underground Structure. SESM Report No. 68-1, Division of Structural Engineering and Structural Mechanics. University of California, Berkeley (1968)

    Google Scholar 

  38. Wood, W., Bossak, M., Zienkiewicz, O.: An alpha modification of Newmark’s method. Int. J. Numer. Methods Eng. 15(10), 1562–1566 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  39. Yu, K.: A new family of generalized-\(\alpha \) time integration algorithms without overshoot for structural dynamics. Earthq. Eng. Struct. Dyn. 37(12), 1389–1409 (2008)

    Article  Google Scholar 

  40. Zhang, H.M., Xing, Y.F.: Optimization of a class of composite method for structural dynamics. Comput. Struct. 202, 60–73 (2018)

    Article  Google Scholar 

  41. Zhang, J., Liu, Y., Liu, D.: Accuracy of a composite implicit time integration scheme for structural dynamics. Int. J. Numer. Methods Eng. 109(3), 368–406 (2017)

    Article  MathSciNet  Google Scholar 

  42. Zhang, L., Liu, T., Li, Q.: A robust and efficient composite time integration algorithm for nonlinear structural dynamic analysis. Math. Probl. Eng. 2015, 11 (2015). https://doi.org/10.1155/2015/907023

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 11372084). This support is gratefully acknowledged. The helpful and constructive comments by the referees have led to the improvements of this paper; the authors gratefully acknowledge this assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaiping Yu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Derivation of the amplification matrix A for the three sub-step composite algorithm can be divided into the following steps:

First, applying the trapezoidal rule in the first sub-step to the SDOF system yields

$$\begin{aligned} \begin{bmatrix} x_{t+\gamma _1 h}\\ h{\dot{x}}_{t+\gamma _1 h}\\ h^2\ddot{x}_{t+\gamma _1 h} \end{bmatrix}=A_{11}\begin{bmatrix} x_{t}\\ h{\dot{x}}_{t}\\ h^2\ddot{x}_{t} \end{bmatrix} \end{aligned}$$
(A1)

where the amplification matrix \(A_{11}\) in the first sub-step can be written explicitly as

$$\begin{aligned}&A_{11}\nonumber \\&\quad =\frac{1}{\beta _1}\begin{bmatrix} 4\gamma _1\xi \Omega +4&2\gamma _1(2+\gamma \xi \Omega )&\gamma _1^2\\ -2\gamma _1\Omega ^2&4-\gamma _1^2\Omega ^2&2\gamma _1\\ -4\Omega ^2&-4\Omega (\gamma _1\Omega +2\xi )&-\gamma _1^2\Omega ^2-4\gamma _1\xi \Omega \\ \end{bmatrix} \end{aligned}$$
(A2)

where \(\beta _1=\gamma _1^2\Omega ^2+4\gamma _1\xi \Omega +4\). \(\omega =\Omega /h\) and \(\xi \) are the undamped natural frequency and viscous damping ratio of the SDOF system, respectively.

Second, the similar calculation can be done in the second sub-step. And when \(\gamma _2=2\gamma _1\), the matrix–vector form can be given as

$$\begin{aligned} \begin{bmatrix} x_{t+\gamma _2 h}\\ h{\dot{x}}_{t+\gamma _2 h}\\ h^2\ddot{x}_{t+\gamma _2 h} \end{bmatrix}=A_{22}\begin{bmatrix} x_{t+\gamma _1h}\\ h{\dot{x}}_{t+\gamma _1h}\\ h^2\ddot{x}_{t+\gamma _1h} \end{bmatrix} \end{aligned}$$
(A3)

And the amplification matrix \(A_{22}\) is exactly identical to the amplification matrix \(A_{11}\) in the first sub-step, namely \(A_{22}=A_{11}\).

Then, the calculation in the third sub-step yields

$$\begin{aligned} \begin{bmatrix} x_{t+h}\\ h{\dot{x}}_{t+h}\\ h^2\ddot{x}_{t+h} \end{bmatrix}= & {} A_{2s}\begin{bmatrix} x_{t+\gamma _2 h}\\ h{\dot{x}}_{t+\gamma _2 h}\\ h^2\ddot{x}_{t+\gamma _2 h} \end{bmatrix}+A_{1s}\begin{bmatrix} x_{t+\gamma _1 h}\\ h{\dot{x}}_{t+\gamma _1 h}\\ h^2\ddot{x}_{t+\gamma _1 h} \end{bmatrix}\nonumber \\&\quad +A_{0s}\begin{bmatrix} x_{t}\\ h{\dot{x}}_{t}\\ h^2\ddot{x}_{t} \end{bmatrix} \end{aligned}$$
(A4)

where three iteration matrices \(A_{2s}\), \(A_{1s}\) and \(A_{0s}\) can be expressed as

$$\begin{aligned} A_{2s}&=\frac{c_3}{\beta _2} \begin{bmatrix} 0&2c_4\xi \Omega +1&c_4\\ 0&-c_4\Omega ^2&1\\ 0&-\Omega ^2&-c_4\Omega ^2-2\xi \Omega \\ \end{bmatrix} \end{aligned}$$
(A5)
$$\begin{aligned} A_{1s}&=\frac{c_2}{c_3}A_{2s} \end{aligned}$$
(A6)
$$\begin{aligned} A_{0s}&=\frac{1}{\beta _2} \begin{bmatrix} 1+2c_4\xi \Omega&2c_1c_4\xi \Omega +c_1+c_4&c_1c_4\\ -c_4\Omega ^2&-c_1c_4\Omega ^2+1&c_1\\ -\Omega ^2&-c_1\Omega ^2-c_4\Omega ^2-2\xi \Omega&-c_1c_4\Omega ^2-2c_1\xi \Omega \\ \end{bmatrix} \end{aligned}$$
(A7)

where \(\beta _2=c_4^2\Omega ^2+2c_4\xi \Omega +1\). The coefficients \(c_1, c_2,c_3\) and \(c_4\) are determined by Eqs. (12).

In the end, substituting Eqs. (A1) and (A3) into Eq. (A4) yields

$$\begin{aligned} \begin{bmatrix} x_{t+h}\\ h{\dot{x}}_{t+h}\\ h^2\ddot{x}_{t+h} \end{bmatrix}=A\begin{bmatrix} x_{t}\\ h{\dot{x}}_{t}\\ h^2\ddot{x}_{t} \end{bmatrix} \end{aligned}$$
(A8)

where the amplification matrix A of the new sub-step algorithm is given as follows

$$\begin{aligned} A=A_{2s}\cdot A_{22}\cdot A_{11}+A_{1s}\cdot A_{11} +A_{0s} \end{aligned}$$
(A9)

Hence, substituting Eqs. (A2), (A5)–(A7) into Eq. (A9) gives the explicit expression of amplification matrix A.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Yu, K. & Li, X. A novel family of controllably dissipative composite integration algorithms for structural dynamic analysis. Nonlinear Dyn 96, 2475–2507 (2019). https://doi.org/10.1007/s11071-019-04936-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04936-4

Keywords

Navigation