Skip to main content
Log in

Crack characteristic analysis of multi-fault rotor system based on whirl orbits

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the nonlinear crack characteristics of different multi-fault rotor system are analyzed for crack detection based on whirl orbits. The nonlinear crack response can bring instability of the rotating shaft. The identification of the nonlinear characteristics is very important in the crack detection. Considering the interaction of rub-impact forces, time-varying stiffness and nonlinear oil-film forces, the nonlinear dynamic models are established. The numerical simulations put emphasis on the evolution of whirl orbits by studying orbit morphological characteristics near subcritical speed for a rotor system with crack. The bifurcation diagrams, time series and frequency spectra are used to analyze the nonlinear coupled behaviors of the multi-fault rotor system. The typical features and rules of whirl orbits are found in the rotor system with crack. The morphological characteristics of whirl orbit present the number and orientation changes of inner loops during the subcritical speed region, even though multi-fault exist in the rotor system with crack. The experimental whirl orbits of a rotor system with crack during passage through the 1/2 subcritical speeds agree with the theoretical analysis. The orbit morphological characteristics will offer a method for crack detection in multi-fault rotor system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Abbreviations

\(o^{{\prime }}\) :

The center of the rotating shaft

\(\phi _o \) :

The initial phase angle of the shaft

\(\omega ,t,\theta \) :

The rotation speed, rotating time and rotating angle of the rotor

\(\phi \) :

The angle of difference between rotation and whirl

\(\beta \) :

The angle between the eccentricity and the crack direction

\(\alpha ,\psi \) :

The half of the crack angle and the whirl angle

aA :

The crack depth and the dimensionless crack depth

\(R_1 \) :

The radius of the shaft

\(\mathbf{K},k_{ij} (i,j=x,y)\) :

The stiffness matrix and the stiffness of the cracked shaft

\(k,\Delta k\) :

The stiffness of the rotating shaft and the stiffness variable with shaft crack

\(P_i (i=N,T)\) :

The striking force and the frictional force

\(r,\delta ,f\) :

The radial displacement of the shaft center, initial clearance and friction factor of rotor–stator

\(k_c \) :

The stiffness of stator

\(p_{i}=(i=x,y)\) :

The component of rub-impact forces in X direction and Y direction

\(F_{i}=(i=x,y)\) :

The oil-film forces acting on the shaft

\(f_i (i=x,y)\) :

The non-dimensional components of nonlinear oil-film forces

\(\sigma ,\mu \) :

The Sommerfeld correction number and the viscosity of lubricating oil

\(R,L,c^{\prime }\) :

The bearing radius, length and the radial clearance

\(O_1 ,O_2 \) :

The geometric center and centroid of rotor

\(O_1^{\prime }\) :

The geometric center of the oil-film journal bearing

\(O_2^{\prime },O_3 \) :

The geometric center and centroid of the rotor in rotor-bearing system

mc :

The mass of disk and the damping in Jeffcott rotor

e :

The disk eccentricity

\(x_s \) :

The static deformation of the shaft

U :

The dimensionless eccentricity

\(\omega _{{n}} \) :

The natural frequency

\(\xi ^{\prime }\) :

The damping ratio of Jeffcott rotor system

\(\varOmega \) :

The ratio of rotating speed

K :

The ratio of the stiffness change

\(m_i (i=1,2)\) :

The lumped mass of the shaft and the disk

\(c_i (i=1,2)\) :

The damping of the shaft and the disk

\(k_0 \) :

The stiffness of the shaft in rotor-bearing system

References

  1. Sinou, J.J., Lees, A.W.: A non-linear study of a cracked rotor. Eur. J. Mech. 26, 152–170 (2007)

    Article  MATH  Google Scholar 

  2. Sinou, J.J., Lees, A.W.: The influence of cracks in rotating shafts. J. Sound Vib. 285, 1015–1037 (2005)

    Article  Google Scholar 

  3. Ishida, Y.: Cracked rotors: industrial machine case histories and nonlinear effects shown by simple Jeffcott rotor. Mech. Syst. Signal Process. 22, 805–817 (2008)

    Article  Google Scholar 

  4. Al-Shudeifat, M.A., Butcher, E.A.: New breathing functions for the transverse breathing crack of the cracked rotor system: approach for critical and subcritical harmonic analysis. J. Sound Vib. 330, 526–544 (2011)

    Article  Google Scholar 

  5. AL-Shudeifat, M.A., Butcher, E.A., Stern, C.R.: General harmonic balance solution of a cracked rotor-bearing-disk system for harmonic and sub-harmonic analysis: analytical and experimental approach. Int. J. Eng. Sci. 48, 921–935 (2010)

    Article  Google Scholar 

  6. Chan, R.K.C., Lai, T.C.: Digital simulation of a rotating shaft with a transverse crack. Appl. Math. Model. 19, 411–420 (1995)

    Article  MATH  Google Scholar 

  7. Guo, C., AL-Shudeifat, M.A., Yan, J., Bergman, L.A., McFarland, D.M., Butcher, E.A.: Application of empirical mode decomposition to a Jeffcott rotor with a breathing crack. J. Sound Vib. 332, 3881–3892 (2013)

    Article  Google Scholar 

  8. Guo, C.Z., Yan, J.H., Yang, W.C.: Crack detection for a Jeffcott rotor with a transverse crack: an experimental investigation. Mech. Syst. Signal Process. 83, 260–271 (2017)

    Article  Google Scholar 

  9. Darpe, A.K., Gupta, K., Chawla, A.: Transient response and breathing behavior of a cracked Jeffcott rotor. J. Sound Vib. 272, 207–243 (2004)

    Article  Google Scholar 

  10. Gómez-Mancilla, J., Sinou, J.J., Nosov, V.R., Thouverez, F., Zambrano, A.: The influence of crack-imbalance orientation and orbital evolution for an extended cracked Jeffcott rotor. C. R. Mec. 332, 955–962 (2004)

    Article  MATH  Google Scholar 

  11. Tannous, M., Cartraud, P., Torkhani, M., Dureisseix, D.: Assessment of 3D modeling for rotor-stator contact simulations. J. Sound Vib. 353, 327–343 (2015)

    Article  Google Scholar 

  12. Ma, H., Zhao, Q.B., Zhao, X.Y., Han, Q.K., Wen, B.C.: Dynamic characteristics analysis of a rotor-stator system under different rubbing forms. Appl. Math. Model. 39, 2392–2408 (2015)

    Article  Google Scholar 

  13. Yang, Y., Xu, Y.Q., Yang, Y.R., Cao, D.Q.: Dynamics characteristics of a rotor-casing system subjected to axial load and radial rub. Int. J. Non-linear Mech. 99, 59–68 (2018)

    Article  Google Scholar 

  14. Chu, F.L., Lu, W.X.: Experimental observation of nonlinear vibrations in a rub-impact rotor system. J. Sound Vib. 283, 621–643 (2005)

    Article  Google Scholar 

  15. Nembhard, A.D., Sinha, J.K., Yunusa-Kaltungo, A.: Experimental observations in the shaft orbits of relatively flexible machines with different rotor related faults. Measurement 75, 320–337 (2015)

    Article  Google Scholar 

  16. Patel, T.H., Darpe, A.K.: Influence of crack breathing model on nonlinear dynamics of a cracked rotor. J. Sound Vib. 311, 953–972 (2008)

    Article  Google Scholar 

  17. Patel, T.H., Darpe, A.K.: Vibration response of a cracked rotor in presence of rotor-stator rub. J. Sound Vib. 317, 841–865 (2008)

    Article  Google Scholar 

  18. Chang-Jian, C.W., Chen, C.K.: Couple stress fluid improve rub-impact rotor-bearing system—nonlinear dynamic analysis. Appl. Math. Model. 34, 1763–1778 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wan, F., Xu, Q., Li, S.: Vibration analysis of cracked rotor sliding bearing system with rotor–stator rubbing by harmonic wavelet transform. J. Sound Vib. 271, 507–518 (2004)

    Article  Google Scholar 

  20. Wang, L., Cao, D.Q., Huang, W.: Nonlinear coupled dynamics of flexible blade–rotor–bearing systems. Tribol. Int. 43, 759–778 (2010)

    Article  Google Scholar 

  21. Ren, Z., Zhou, S., Li, C., Wen, B.: Dynamic characteristics of multi-degrees of freedom system rotor-bearing system with coupling faults of rub-impact and crack. Chin. J. Mech. Eng. 27, 785–792 (2014)

    Article  Google Scholar 

  22. Xiang, L., Gao, X., Hu, A.: Nonlinear dynamics of an asymmetric rotor-bearing system with coupling faults of crack and rub-impact under oil-film forces. Nonlinear Dyn. 86, 1057–1067 (2016)

    Article  Google Scholar 

  23. Kodba, S., Perc, M., Marhl, M.: Detecting chaos from a time series. Eur. J. Phys. 26, 205–215 (2005)

    Article  Google Scholar 

  24. Perc, M.: Visualizing the attraction of strange attractors. Eur. J. Phys. 26, 579–587 (2005)

    Article  MathSciNet  Google Scholar 

  25. Ginoux, J., Ruskeepaa, H., Perc, M., Naeck, R., Costanzo, V.D., Bouchouicha, M., Fnaiech, F., Sayadi, M., Hamdi, T.: Is type 1 diabetes a chaotic phenomenon? Chaos Solitons Fractals 111, 198–205 (2018)

    Article  Google Scholar 

  26. Fister Jr., I., Perc, M., Kamal, S.M., Fister, I.: A review of chaos-based firefly algorithms: perspectives and research challenges. Appl. Math. Comput. 252, 155–165 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Adiletta, G., Guido, A.R., Rossi, C.: Chaotic motions of a rigid rotor in short journal bearings. Nonlinear Dyn. 10, 251–269 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

This research work is funded by the National Natural Science Foundation of China (No. 51675178).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Xiang.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, L., Zhang, Y. & Hu, A. Crack characteristic analysis of multi-fault rotor system based on whirl orbits. Nonlinear Dyn 95, 2675–2690 (2019). https://doi.org/10.1007/s11071-018-4715-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4715-y

Keywords

Navigation