Skip to main content
Log in

Adaptive finite time distributed 6-DOF synchronization control for spacecraft formation without velocity measurement

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the problem of distributed finite time six-degree-of-freedom (6-DOF) synchronization control for spacecraft formation flying (SFF) with the external disturbances and parameter uncertainties is investigated. Firstly, a continuous adaptive finite time distributed control protocol with full state feedback is proposed, which can overcome the chattering problem and reduce the convergence time in the reaching phase. Subsequently, an adaptive sliding mode observer with finite time convergence is designed to estimate the velocity information. Then a new observer-based continuous adaptive finite time distributed control protocol is designed. Rigorous proofs show that these two distributed controllers both can guarantee that the attitude and relative position tracking errors can converge to the origin within finite time rather than the bounded regions around the origins. Finally, the effectiveness of the designed distributed control protocols is demonstrated by simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zou, A.M., de Ruiter, A.H.J., Kumar, K.D.: Distributed finite-time velocity-free attitude coordination control for spacecraft formations. Automatica 67, 46–53 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Huang, D., Wang, Q., Duan, Z.: Distributed attitude control for multiple flexible spacecraft under actuator failures and saturation. Nonlinear Dyn. 88, 529–546 (2017)

    Article  MATH  Google Scholar 

  3. Chen, T., Chen, G.: Distributed adaptive tracking control of multiple flexible spacecraft under various actuator and measurement limitations. Nonlinear Dyn. 91, 1571–1586 (2018)

    Article  MATH  Google Scholar 

  4. Tang, Z., Park, J.H., Zheng, W.X.: Distributed impulsive synchronization of Lur’e dynamical networks via parameter variation methods. Int. J. Robust Nonlinear Control 28, 1001–1015 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ren, W.: Distributed cooperative attitude synchronization and tracking for multiple rigid bodies. IEEE Trans. Control Syst. Technol. 18, 383–392 (2010)

    Article  Google Scholar 

  6. Hu, Q., Dong, H., Zhang, Y., Ma, G.: Tracking control of spacecraft formation flying with collision avoidance. Aerosp. Sci. Technol. 42, 353–364 (2015)

    Article  Google Scholar 

  7. He, X., Wang, Q., Yu, W.: Finite-time distributed cooperative attitude tracking control for multiple rigid spacecraft. Appl. Math. Comput. 256, 724–734 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Zhang, F., Duan, G.: Robust adaptive integrated translation and rotation control of a rigid spacecraft with control saturation and actuator misalignment. Acta Astronaut. 86, 167–187 (2013)

    Article  Google Scholar 

  9. Xia, K., Huo, W.: Robust adaptive backstepping neural networks control for spacecraft rendezvous and docking with uncertainties. Nonlinear Dyn. 84, 1683–1695 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kristiansen, R., Nicklasson, P.J., Gravdahl, J.T.: Spacecraft coordination control in 6 DOF: integrator backstepping vs passivity-based control. Automatica 44, 2896–2901 (2008)

    Article  MATH  Google Scholar 

  11. Wu, J., Liu, K., Han, D.: Adaptive sliding mode control for six-DOF relative motion of spacecraft with input constraint. Acta Astronaut. 87, 64–76 (2013)

    Article  Google Scholar 

  12. Du, H., Li, S., Qian, C.: Finite-time attitude tracking control of spacecraft with application to attitude synchronization. IEEE Trans. Autom. Control 56, 2711–2717 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Xiao, B., Hu, Q., Zhang, Y.: Finite-time attitude tracking of spacecraft with fault-tolerant capability. IEEE Trans. Control Syst. Technol. 23, 1338–1350 (2015)

    Article  Google Scholar 

  14. Cheng, Y., Du, H., He, Y., Jia, R.: Distributed finite-time attitude regulation for multiple rigid spacecraft via bounded control. Inf. Sci. 328, 144–157 (2016)

    Article  Google Scholar 

  15. Hu, Q., Zhang, J.: Relative position finite-time coordinated tracking control of spacecraft formation without velocity measurements. ISA Trans. 54, 60–74 (2015)

    Article  Google Scholar 

  16. Lee, D.: Nonlinear disturbance observer-based robust control of attitude tracking of rigid spacecraft. Nonlinear Dyn. 88, 1317–1328 (2017)

    Article  MATH  Google Scholar 

  17. Huang, Y., Jia, Y.: Robust adaptive fixed-time tracking control of 6-DOF spacecraft fly-around mission for noncooperative target. Int. J. Robust Nonlinear Control 28, 2598–2618 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhao, L., Jia, Y.: Decentralized adaptive attitude synchronization control for spacecraft formation using nonsingular fast terminal sliding mode. Nonlinear Dyn. 78, 2779–2794 (2014)

    Article  MATH  Google Scholar 

  19. Zhou, N., Xia, Y., Wang, M., Fu, M.: Finite-time attitude control of multiple rigid spacecraft using terminal sliding mode. Int. J. Robust Nonlinear Control 25, 1862–1876 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mobayen, S.: Finite-time tracking control of chained-form nonholonomic systems with external disturbances based on recursive terminal sliding mode method. Nonlinear Dyn. 80, 669–683 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Moreno, J.A., Osorio, M.: Strict Lyapunov functions for the super-twisting algorithm. IEEE Trans. Autom. Control 57, 1035–1040 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pukdeboon, C.: Output feedback second order sliding mode control for spacecraft attitude and translation motion. Int. J. Control Autom. 14, 411–424 (2016)

    Article  MathSciNet  Google Scholar 

  23. Lu, K., Xia, Y.: Finite-time attitude control for rigid spacecraft-based on adaptive super-twisting algorithm. IET Control Theory Appl. 8, 1465–1477 (2014)

    Article  Google Scholar 

  24. Wang, J., Sun, Z.: 6-DOF robust adaptive terminal sliding mode control for spacecraft formation flying. Acta Astronaut. 73, 76–87 (2012)

    Article  Google Scholar 

  25. Huang, Y., Jia, Y.: Distributed finite-time output feedback synchronisation control for six DOF spacecraft formation subject to input saturation. IET Control Theory Appl. 12, 532–542 (2017)

    Article  MathSciNet  Google Scholar 

  26. Abdessameud, A., Tayebi, A.: Attitude synchronization of a group of spacecraft without velocity measurements. IEEE Trans. Autom. Control 54, 2642–2648 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zou, A.M., Kumar, K.D., Hou, Z.G.: Attitude coordination control for a group of spacecraft without velocity measurements. IEEE Trans. Control Syst. Technol. 20, 1160–1174 (2012)

    Article  Google Scholar 

  28. Ran, D., Chen, X., Misra, A.K.: Finite time coordinated formation control for spacecraft formation flying under directed communication topology. Acta Astronaut. 136, 125–136 (2017)

    Article  Google Scholar 

  29. Zhou, N., Xia, Y., Lu, K., Li, Y.: Decentralised finite-time attitude synchronisation and tracking control for rigid spacecraft. Int. J. Syst. Sci. 46, 2493–2509 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Meng, Z., Ren, W., You, Z.: Distributed finite-time attitude containment control for multiple rigid bodies. Automatica 46, 2092–2099 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sun, L., Huo, W.: 6-DOF integrated adaptive backstepping control for spacecraft proximity operations. IEEE Trans. Aerosp. Electron. Syst. 51, 2433–2443 (2015)

    Article  Google Scholar 

  32. Schaub, H., Akella, M.R., Junkins, J.L.: Adaptive control of nonlinear attitude motions realizing linear closed loop dynamics. J. Guid. Control Dyn. 24, 95–100 (2001)

    Article  Google Scholar 

  33. Tiwari, P.M., Janardhanan, S., un Nabi, M.: Rigid spacecraft attitude control using adaptive integral second order sliding mode. Aerosp. Sci. Technol. 42, 50–57 (2015)

    Article  MATH  Google Scholar 

  34. Sun, L., Huo, W., Jiao, Z.: Disturbance observer-based robust relative pose control for spacecraft rendezvous and proximity operations under input saturation. IEEE Trans. Aerosp. Electron. Syst. 54, 1605–1617 (2018)

    Article  Google Scholar 

  35. Zhao, L., Jia, Y.: Finite-time attitude tracking control for a rigid spacecraft using time-varying terminal sliding mode techniques. Int. J. Control 88, 1150–1162 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Du, H., Li, S.: Finite-time attitude stabilization for a spacecraft using homogeneous method. J. Guid. Control Dyn. 35, 740–748 (2012)

    Article  Google Scholar 

  37. Zhao, Y., Duan, Z., Wen, G.: Distributed finite-time tracking of multiple Euler–Lagrange systems without velocity measurements. Int. J. Robust Nonlinear Control 25, 1688–1703 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Yu, S., Yu, X., Shirinzadeh, B., Man, Z.: Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41, 1957–1964 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sun, H., Li, S., Sun, C.: Finite time integral sliding mode control of hypersonic vehicles. Nonlinear Dyn. 73, 229–244 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Levant, A.: Principles of 2-sliding mode design. Automatica 43, 576–586 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Moreno, J.A., Osorio, M.A.: Lyapunov approach to second-order sliding mode controllers and observers. In: Proceedings of the 47th IEEE Conference on Decision and Control, pp. 2856–2861 (2008)

  42. Liu, J., Laghrouche, S., Harmouche, M., Wack, M.: Adaptive-gain second-order sliding mode observer design for switching power converters. Control Eng. Pract. 30, 124–131 (2014)

    Article  Google Scholar 

  43. Tian, B., Yin, L., Wang, H.: Finite-time reentry attitude control based on adaptive multivariable disturbance compensation. IEEE Trans. Ind. Electron. 62, 5889–5898 (2015)

    Article  Google Scholar 

  44. Besancon G.: An overview on observer tools for nonlinear systems. In: Nonlinear Observers and Applications. Springer, Berlin, Heidelberg, pp. 1–33 (2007)

  45. Zhang A., Li Y.: A modified unscented Kalman filter for autonomous navigation of distributed satellite systems. In: IEEE Proceedings of the Chinese Control Conference, pp. 5811–5816 (2017)

  46. Nagesh, I., Edwards, C.: A multivariable super-twisting sliding mode approach. Automatica 50, 984–988 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSFC (61327807,61521091, 61520106010, 61134005) and the National Basic Research Program of China (973 Program: 2012

CB821200, 2012CB821201), and the Academic Excellence Foundation of BUAA for PhD Students.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Huang.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Jia, Y. Adaptive finite time distributed 6-DOF synchronization control for spacecraft formation without velocity measurement. Nonlinear Dyn 95, 2275–2291 (2019). https://doi.org/10.1007/s11071-018-4691-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4691-2

Keywords

Navigation