Skip to main content

Advertisement

Log in

A new nonlinear vibration model of fiber-reinforced composite thin plate with amplitude-dependent property

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the material nonlinearity is introduced in the dynamic modeling of fiber-reinforced composite thin plates, and a new nonlinear vibration model of such composite plate structures with amplitude-dependent property is established with the consideration of the nonlinear stiffness and damping characteristics, which is observed and confirmed in the nonlinear vibration characterization experiment. In this new model, the elastic moduli and loss factors are expressed as the function of strain energy density on the basis of Jones–Nelson material nonlinear model. By using the identified parameters under different excitation amplitudes, these elastic moduli and loss factors are characterized as the function of the maximum dimensionless strain energy density. Then, the power function fitting technique is used to determine the nonlinear stiffness and damping parameters in the model, and the nonlinear natural frequencies, vibration responses and damping ratios of a TC300 carbon/epoxy composite thin plate are calculated and measured in a case study. The comparisons between the theoretical and experimental results show that the maximum calculation error of natural frequencies with consideration of amplitude-dependent property is less than 4.3%, and the maximum calculation errors of resonant response and damping results are no more than 12.5 and 9.6% in the 3rd mode and the 6th mode, respectively. Therefore, the practicability and reliability of the proposed model have been verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Mallick, P.K.: Fiber-reinforced composites: materials, manufacturing, and design[M]. The Chemical Rubber Company Press, Boca Raton (2007)

    Book  Google Scholar 

  2. Gibson, R.F., Plunkett, R.: Dynamic mechanical behavior of fiber-reinforced composites: measurement and analysis. J. Compos. Mater. 10(4), 325–341 (1976)

    Article  Google Scholar 

  3. Chandra, R., Singh, S.P., Gupta, K.: Damping studies in fiber-reinforced composites-a review. Compos. Struct. 46(1), 41–51 (1999)

    Article  Google Scholar 

  4. Yan, L., Jenkins, C.H., Pendleton, R.L.: Polyolefin fiber-reinforced concrete composites: part I. Damping and frequency characteristics. Cem. Concr. Res. 30(3), 391–401 (2000)

    Article  Google Scholar 

  5. Wang, Z.X., Shen, H.S.: Nonlinear vibration and bending of sandwich plates with nanotube-reinforced composite face sheets. Compos. B Eng. 43(2), 411–421 (2012)

    Article  Google Scholar 

  6. Rao, B.N., Pillai, S.R.R.: Non-linear vibrations of a simply supported rectangular antisymmetric cross-ply plate with immovable edges. J. Sound Vib. 152(3), 568–572 (1992)

    Article  Google Scholar 

  7. Singh, G., Rao, G.V., Iyengar, N.G.R.: Non-linear forced vibrations of antisymmetric rectangular cross-ply plates. Compos. Struct. 20(3), 185–194 (1992)

    Article  Google Scholar 

  8. Ribeiro, P., Petyt, M.: Non-linear vibration of composite laminated plates by the hierarchical finite element method. Compos. Struct. 46(3), 197–208 (1999)

    Article  Google Scholar 

  9. Chen, J., Dawe, D.J., Wang, S.: Nonlinear transient analysis of rectangular composite laminated plates. Compos. Struct. 49(2), 129–139 (2000)

    Article  Google Scholar 

  10. Lee, Y.Y., Ng, C.F.: Nonlinear response of composite plates using the finite element modal reduction method. Eng. Struct. 23(9), 1104–1114 (2001)

    Article  Google Scholar 

  11. Harras, B., Benamar, R., White, R.G.: Geometrically non-linear free vibration of fully clamped symmetrically laminated rectangular composite plates. J. Sound Vib. 251(4), 579–619 (2002)

    Article  Google Scholar 

  12. Onkar, A.K., Yadav, D.: Forced nonlinear vibration of laminated composite plates with random material properties. Compos. Struct. 70(3), 334–342 (2005)

    Article  Google Scholar 

  13. Singha, M.K., Daripa, R.: Nonlinear vibration of symmetrically laminated composite skew plates by finite element method. Int. J. Non Linear Mech. 42(9), 1144–1152 (2007)

    Article  Google Scholar 

  14. Kazancı, Zafer, Mecitoğlu, Zahit: Nonlinear dynamic behavior of simply supported laminated composite plates subjected to blast load. J. Sound Vib. 317(3–5), 883–897 (2008)

    Article  Google Scholar 

  15. Singha, M.K., Daripa, R.: Nonlinear vibration and dynamic stability analysis of composite plates. J. Sound Vib. 328(4), 541–554 (2009)

    Article  Google Scholar 

  16. Hahn, H.T., Tsai, S.W.: Nonlinear elastic behavior of unidirectional composite laminae. J. Compos. Mater. 7(1), 102–118 (1973)

    Article  Google Scholar 

  17. Jones, R.M., Nelson, D.A.R.: A new material model for the nonlinear biaxial behavior of atj-s graphite. J. Compos. Mater. 9(1), 10–27 (1975)

    Article  Google Scholar 

  18. Jones, R.M., Morgan, H.S.: Analysis of non-linear stress–strain behavior of fiber-reinforced composite materials. AIAA 15, 1669–1676 (1977)

    Article  Google Scholar 

  19. Amijima, S., Adachi, T.: Nonlinear stress-strain response of laminated composites. J. Compos. Mater. 13(3), 206–218 (1979)

    Article  Google Scholar 

  20. Mathison, S.R., Pindera, M.J., Herakovich, C.T.: Nonlinear response of resin matrix laminates using endochronic theory. J. Eng. Mater. Technol. 113(4), 449–455 (1991)

    Article  Google Scholar 

  21. Tabiei, A., Yi, W., Goldberg, R.: Non-linear strain rate dependent micro-mechanical composite material model for finite element impact and Crashworthiness simulation. Int. J. Non Linear Mech. 40(7), 957–970 (2005)

    Article  Google Scholar 

  22. Firle, T.E.: Amplitude dependence of internal friction and Shear modulus of Boron fibers. J. Appl. Phys. 39(6), 2839–2845 (1968)

    Article  Google Scholar 

  23. Maslov, K., Kinra, V.K.: Amplitude–frequency dependence of damping properties of carbon foams. J. Sound Vib. 282(3), 769–780 (2005)

    Article  Google Scholar 

  24. Höfer, P., Lion, A.: Modelling of frequency- and amplitude-dependent material properties of filler-reinforced rubber. J. Mech. Phys. Solids 57(3), 500–520 (2009)

    Article  Google Scholar 

  25. Khan, S.U., Li, C.Y., Siddiqui, N.A., et al.: Vibration damping characteristics of carbon fiber-reinforced composites containing multi-walled carbon nanotubes. Compos. Sci. Technol. 71(12), 1486–1494 (2011)

    Article  Google Scholar 

  26. Li, H., Sun, W., Zhu, M., et al.: Experimental study on the influence on vibration characteristics of thin cylindrical shell with hard coating under cantilever boundary condition. Shock Vib. 2017(9–10), 1–23 (2017)

    Google Scholar 

  27. Li, H., Niu, Y., Mu, C., et al.: Identification of loss factor of fiber-reinforced composite based on complex modulus method. Shock Vib. 2017(2), 1–13 (2017)

    Google Scholar 

  28. Arqub, O.A., Abo-Hammour, Z.: Numerical solution of systems of second-order boundary value problems using continuous genetic algorithm. Inf. Sci. 279, 396–415 (2014)

    Article  MathSciNet  Google Scholar 

  29. Arqub, O.A.: The reproducing kernel algorithm for handling differential algebraic systems of ordinary differential equations. Math. Methods Appl. Sci. 39(15), 4549–4562 (2016)

    Article  MathSciNet  Google Scholar 

  30. Kim, S.Y., Lee, D.H.: Identification of fractional-derivative-model parameters of viscoelastic materials from measured FRFs. J. Sound Vib. 324(3), 570–586 (2009)

    Article  Google Scholar 

  31. Johnson, C.D.: Characterization of damping properties of nonlinear viscoelastic materials. Proc. SPIE Int. Soc. Opt. Eng. 2445, 200–211 (1995)

    Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China granted No. 51505070, the Fundamental Research Funds for the Central Universities of China granted No. N150304011, N160313002 and N160312001, the Scholarship Fund of China Scholarship Council (CSC) granted No. 201806085032, and the Key Laboratory of Vibration and Control of Aero-Propulsion System Ministry of Education, Northeastern University, granted No.VCAME201603.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Li.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Xue, P., Guan, Z. et al. A new nonlinear vibration model of fiber-reinforced composite thin plate with amplitude-dependent property. Nonlinear Dyn 94, 2219–2241 (2018). https://doi.org/10.1007/s11071-018-4486-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4486-5

Keywords

Navigation