Skip to main content
Log in

Detumbling strategy and coordination control of kinematically redundant space robot after capturing a tumbling target

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper focuses on the motion planning to detumble and control of a space robot to capture a non-cooperative target satellite. The objective is to construct a detumbling strategy for the target and a coordination control scheme for the space robotic system in post-capture phase. First, the dynamics of the kinematically redundant space robot after grasping the target is presented, which lays the foundation for the coordination controller design. Subsequently, optimal detumbling strategy for the post-capture phase is proposed based on the quartic B\(\acute{\text{ e }}\)zier curves and adaptive particle swarm optimization algorithm subject to the specific constraints. Both detumbling time and control torques were taken into account for the generation of the optimal detumbling strategy. Furthermore, a coordination control scheme is designed to track the designed reference path while regulating the attitude of the chaser to a desired value. The space robot successfully dumps the initial velocity of the tumbling satellite and controls the base attitude synchronously. Simulation results are presented for detumbling a target with rotational motion using a seven degree-of-freedom redundant space manipulator, which demonstrates the feasibility and effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Hirzinger, G., Brunner, B., Dietrich, J., Heindl, J.: ROTEX—the first remotely controlled robot in space. In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 2604–2611. San Diego, CA (1994)

  2. Inaba, N., Oda, M.: Autonomous satellite capture by a space robot. In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 1169–1174. San Francisco, CA (2000)

  3. Ogilvie, A., Allport, J., Hannah, M., Lymer, J.: Autonomous satellite servicing using the orbital express demonstration manipulator system. In: Proceedings of the 9th International Symposium on Artificial Intelligence, Robotics and Automation in Space, iSAIRAS, pp. 25–29. Los Angeles, CA (2008)

  4. Rekleitis, I., Martin, E., Rouleau, G., L’Archeveque, R., Parsa, K., Dupuis, E.: Autonomous capture of a tumbling satellite. J. Field Robot. 23, 275–296 (2007)

    Article  Google Scholar 

  5. Yoshida, K., Hashizume, K., Abiko, S.: Zeros reaction maneuver: flight validation with ETS-VII space robot and extension to kinematically redundant arm. In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 441–446. Seoul, Korea (2001)

  6. Nguyen-Huynh, T., Sharf, I.: Adaptive reactionless motion for space manipulator when capturing an unknown tumbling target In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 4202–4207. Shanghai, China (2011)

  7. Shah, S., Sharf, I., Misra, A.: Reactionless path planning strategies for capture of tumbling objects in space using a dual-arm robotic system. In: AIAA Conference on Guidance, Navigation, and Control, Boston, MA (2013)

  8. Xu, W., Li, C., Wang, X., Liang, B.: Study on non-holonomic cartesian path planning of a free-floating space robotic system. Adv. Robot. 23(1–2), 113–143 (2009)

    Article  Google Scholar 

  9. Xu, W., Zhang, J., Liang, B., Li, B.: Singularity analysis and avoidance for robot manipulators with non-spherical wrist. IEEE Trans. Ind. Electron. 63(1), 277–290 (2016)

    Article  Google Scholar 

  10. Lampariello, R., Tuong, D., Castellini, C., Hirzinger, G., Peters, J.: Trajectory planning for optimal robot catching in real-time. In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 3719–3726. Shanghai, China (2011)

  11. Wang, M., Luo, J., Walter, U.: Trajectory planning of free-floating space robot using particle swarm optimization (PSO). Acta Astronaut. 112, 77–88 (2015)

    Article  Google Scholar 

  12. Wang, M., Luo, J., Walter, U.: Novel synthesis method for minimizing attitude disturbance of the free-floating space robots. J. Guid. Control Dyn. 39(3), 695–704 (2016)

    Article  Google Scholar 

  13. Xu, Y., Shum, H., Lee, J., Kanade, T.: Adaptive control of space robot system with an attitude controlled base. In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 2005–2010. Nice, France (1992)

  14. Matsuno, F., Saito, K.: Attitude control of a space robot with initial angular momentum. In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 1400–1405. Seoul, Korea (2001)

  15. Kai, T.: A Model predictive control approach to attitude stabilization and trajectory tracking control of 3D universal joint space with an initial angular momentum. In: Proceedings of the IEEE Conference on Decision and Control, pp. 3547–3552. St. Orlando, FL (2011)

  16. Wang, M., Luo, J., Walter, U.: A non-linear model predictive control with obstacle avoidance for a space robot. Adv. Space Res. 57(8), 1737–1746 (2016)

    Article  Google Scholar 

  17. Khooban, M., Alfi, A., Abadi, D.: Teaching-learning-based optimal interval type-2 fuzzy PID controller design: a nonholonomic wheeled mobile robots. Robotica 31(7), 1059–1071 (2013)

    Article  Google Scholar 

  18. Niknam, T., Khooban, M., Kavousifard, A., Soltanpour, M.: An optimal type II fuzzy sliding mode control design for a class of nonlinear systems. Nonlinear Dyn. 75, 73–83 (2014)

    Article  MathSciNet  Google Scholar 

  19. Pan, H., Xin, M.: Nonlinear robust and optimal control of robot manipulators. Nonlinear Dyn. 76, 237–254 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zadeh, S., Khorashadizadeh, S., Fateh, M., Hadadzarif, M.: Optimal sliding mode control of a robot manipulator under uncertainty using PSO. Nonlinear Dyn. 84, 2227–2239 (2016)

    Article  MathSciNet  Google Scholar 

  21. Soltanpour, M., Khooban, M., Soltani, M.: Robust fuzzy sliding mode control for tracking the robot manipulator in joint space and in presence of uncertainties. Robotica 32(3), 433–446 (2014)

    Article  Google Scholar 

  22. Rigatos, G., Siano, P., Raffo, G.: A nonlinear h-infinity control method for multi-DOF robotic manipulators. Nonliear Dyn. 88, 329–348 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wei, C., Luo, J., Dai, H., Yin, Z., Ma, W., Yuan, J.: Globally robust explicit model predictive control of constrained systems exploiting SVM-based approximation. Int. J. Robust Nonlinear Control 27, 3000–3027 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nenchev, D., Yoshida, K.: Impact analysis and post-impact motion control issue of a free-floating space robot subject to a force impulse. IEEE Trans. Robot. Autom. 15, 548–557 (1999)

    Article  Google Scholar 

  25. Yoshida, K., Dimitrov, D., Nakanishi, H.: On the capture of tumbling satellite by a space robot. In: Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, pp. 4127–4132. Beijing, China (2006)

  26. Abiko, S., Lampariello, R., Hirzinger, G.: Impedance control for a free-floating robot in the grasping of a tumbling target with parameter uncertainty. In: Proceedings IEEE/RSJ Conference on Intelligent Robots and Systems, pp. 1020–1025. Beijing, China (2006)

  27. Ren, Y., Zhou, Y., Liu, Y., Jin, M., Liu, H.: Adaptive objective impedance control of dual-arm cooperative humanoid manipulators. In: Proceedings of the 11th World Conference on Intelligent Control and Automation, pp. 3333–3339. Shenyang, China (2014)

  28. Aghili, F.: Coordination control of a free-flying manipulator and its base attitude to capture and detumble a noncooperative satellite. In: Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, pp. 2365–2372. St. Louis, MO (2009)

  29. Aghili, F.: A prediction and motion-planning scheme for visually guided robotic capturing of free-floating tumbling objects with uncertain dynamics. IEEE Trans. Robot. 28(3), 634–649 (2012)

    Article  Google Scholar 

  30. Oki, T., Abiko, S., Nakanishi, H., Yoshida, K.: Time-optimal detumbling maneuver along an arbitrary arm motion during the capture of a target satellite. In: Proceedings IEEE/RSJ Conference on Intelligent Robots and Systems, pp. 625–630. San Francisco, CA (2011)

  31. Flores-Abad, A., Zhang, L., Wei, Z., Ma, O.: Optimal capture of a tumbling object in orbit using a space manipulator. J. Intell. Robot. Syst. 86, 199–211 (2017)

    Article  Google Scholar 

  32. Zhang, B., Liang, B., Wang, Z., Mi, Y., Zhang, Y., Chen, Z.: Coordinated stabilization for space robot after capturing a noncooperative target with large inertia. Acta Astronaut. 134, 75–84 (2017)

    Article  Google Scholar 

  33. Agrawal, S., Garimella, R., Desmier, G.: Free-floating closed-chain planar robots: kinematics and path planning. Nonlinear Dyn. 9, 1–19 (1996)

    Article  Google Scholar 

  34. Cyril, X., Misra, A., Ingham, M., Jaar, G.: Postcapture dynamics of a spacecraft-manipulator-payload system. J. Guid. Control Dyn. 23, 95–100 (2000)

    Article  Google Scholar 

  35. Wang, M., Walter, U.: Joint-space dynamics algorithm for tree structure space manipulators by using inertia mapping matrix. In: Proceedings ECCOMAS Thematic Conference on Multibody Dynamics, pp. 819–829. Zagreb, Croatia (2013)

  36. Xu, W., Peng, J., Liang, B., Mu, Z.: Hybrid modeling and analysis method for dynamic coupling of space robots. IEEE Trans. Aerosp. Electron. Syst. 52(1), 85–98 (2016)

    Article  Google Scholar 

  37. Soltanpour, M., Khooban, M.: A particle swarm optimization approach for fuzzy sliding mode control for tracking the robot manipulator. Nonlinear Dyn. 74, 467–478 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Clerc, M., Kennedy, J.: The particle swarm explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)

    Article  Google Scholar 

  39. Shi, Y., Everhart, R.: Parameter selection in particle swarm optimization. In: Proceedings of the 7th Conference on Evolutionary Programming VII, pp. 591–600. San Diego, CA (1998)

  40. Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In: Proceedings IEEE Swarm Intelligence Symposium, pp. 120–127. Honolulu, HI (2007)

  41. Kentzoglanakis, K., Poole, M.: Particle swarm optimization with an oscillating inertia weight. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 1749–1750. Montreal, Canada (2009)

  42. Trelea, I.: The particle swarm optimization algorithm: convergence analysis and parameter selection. Inform. Process. Lett. 85, 317–325 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  43. Helwig, S.: Particle swarms for constrained optimization. Doctoral diss, Erlangen University, Erlangen, Germany (2010)

  44. Chiaverini, S.: Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators. IEEE Trans. Robot. Autom. 13, 398–410 (1997)

    Article  Google Scholar 

  45. Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics modelling, planning and control, 1st edn. Springer, London (2009)

    Google Scholar 

Download references

Acknowledgements

This research was supported by “the National Natural Science Foundation of China (Grant No. 61603304, 61690210)” and “Shenzhen Future Industry Special Fund (Grant No. JCYJ20160531174213774).”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Luo, J., Yuan, J. et al. Detumbling strategy and coordination control of kinematically redundant space robot after capturing a tumbling target. Nonlinear Dyn 92, 1023–1043 (2018). https://doi.org/10.1007/s11071-018-4106-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4106-4

Keywords

Navigation