Skip to main content
Log in

Synchronization transitions induced by partial time delay in a excitatory–inhibitory coupled neuronal network

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Information transmission delays are an inherent factor of neuronal systems as a consequence of the finite propagation speeds and time lapses occurring by both dendritic and synaptic processes. In real neuronal systems, some delay between two neurons is too small and can be ignored, which results in partial time delay. In this paper, we focus on investigating influences of partial time delay on synchronization transitions in a excitatory–inhibitory (E–I) coupled neuronal networks. Here, we suppose time delay between two neurons equals to \(\tau \) with probability \(p_{\mathrm{delay}}\) and investigate effect of partial time delay on synchronization transitions of the neuronal networks by controlling \(\tau \) and \(p_{\mathrm{delay}}\) under three cases. In these three cases, excitatory synapses are always considered to delayed with probability \(p_{\mathrm{delay}}\), while inhibitory synapses are considered to be without delays (case I), delayed with probability \(p_{\mathrm{delay}}\) (case II), and always delayed (case III), respectively. It is revealed that, in the first two cases, partial time delay has little influences on synchronization of the neuronal network for small \(p_{\mathrm{delay}}\), while it could induce synchronization transitions at \(\tau \) around integer multiples of the period of individual neuron T when \(p_{\mathrm{delay}}\) is large enough, while in the case III, partial time delay could induce synchronization transitions at \(\tau \) being around odd integer multiples of T / 2 for small \(p_{\mathrm{delay}}\) and at \(\tau \) being around integer multiples of T for large \(p_{\mathrm{delay}}\). Most interesting observation is that partial time delay could induce frequent synchronization transitions at \(\tau \) being around integer multiples of T / 2 for intermediate \(p_{\mathrm{delay}}\). Moreover, effect of rewiring probability on synchronization transitions induced by partial time delay has been discussed. It is found that synchronization transitions induced by partial time delay are robust to rewiring probability for large \(p_{\mathrm{delay}}\) under the three cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks. Phys. Rep. 469, 93–153 (2008)

    Article  MathSciNet  Google Scholar 

  2. Arenas, A., Díaz-Guilera, A., Prez-Vicente, C.J.: Synchronization processes in complex networks. Physica D 224, 27–34 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Osipov, G.V., Kurths, J., Zhou, C.: Synchronization in Oscillatory Networks. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  4. Gray, C.M., Singer, W.: Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc. Natl. Acad. Sci. USA 86, 1698–1702 (1989)

    Article  Google Scholar 

  5. Bazhenov, M., Stopfer, M., Rabinovich, M., et al.: Model of transient oscillatory synchronization in the locust antennal lobe. Neuron 30, 553–567 (2001)

    Article  Google Scholar 

  6. Mehta, M.R., Lee, A.K., Wilson, M.A.: Role of experience and oscillations in transforming a rate code into a temporal code. Nature 417, 741–746 (2002)

    Article  Google Scholar 

  7. Varela, F., Lachaux, J.P., Rodriguez, E., Martinerie, J.: The brainweb: phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2, 229–239 (2001)

    Article  Google Scholar 

  8. Uhlhaas, P.J., Singer, W.: Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52, 155–168 (2006)

    Article  Google Scholar 

  9. Traub, R.D., Bibbig, A., LeBeau, F.E., Buhl, E.H., Whittington, M.A.: Cellular mechanisms of neuronal population oscillations in the hippocampus in vitro. Annu. Rev. Neurosci. 27, 247–278 (2004)

    Article  Google Scholar 

  10. Cheng, W., Rolls, E.T., Gu, H., Zhang, J., Feng, J.: Autism: reduced connectivity between cortical areas involved in face expression, theory of mind, and the sense of self. Brain 138, 1382 (2015)

    Article  Google Scholar 

  11. Dhamala, M., Jirsa, V.K., Ding, M.: Enhancement of neural synchrony by time delay. Phys. Rev. Lett. 92, 074104 (2004)

    Article  Google Scholar 

  12. Wong, R.K., Prince, D.A.: Afterpotential generation in hippocampal pyramidal cells. J. Neurophysiol. 45, 86–97 (1981)

    Google Scholar 

  13. Szcs, A., Pinto, R.D., Rabinovich, M.I., Abarbanel, H.D.I.: Synaptic modulation of the interspike interval signatures of bursting pyloric neurons. J. Neurophysiol. 89, 1363–1377 (2002)

    Article  Google Scholar 

  14. Elson, R.C., Selverston, A.I., Huerta, R., Rulkov, N.F., Rabinovich, M.I., Abarbanel, H.D.: Synchronous behaviour of two coupled biological neurons. Phys. Rev. Lett. 81, 5692 (1998)

    Article  Google Scholar 

  15. Wang, X.J.: Neurophysiological and computational principles of cortical rhythms in cognition. Physiol. Rev. 90, 1195–1268 (2010)

    Article  Google Scholar 

  16. Shi, X., Lu, Q.S.: Burst synchronization of electrically and chemically coupled map-based neurons. Physica A 388, 2410–2419 (2009)

    Article  Google Scholar 

  17. Liang, X.M., Tang, M., Dhamala, M., Liu, Z.H.: Phase synchronization of inhibitory bursting neurons induced by distributed time delays in chemical coupling. Phys. Rev. E 80, 066202 (2009)

    Article  Google Scholar 

  18. Sun, X.J., Lei, J.Z., Perc, M., et al.: Burst synchronization transitions in a neuronal network of subnetworks. Chaos 21, 016110 (2011)

    Article  Google Scholar 

  19. Sun, X.J., Han, F., Wiercigroch, M., Shi, X.: Effects of time-periodic intercoupling strength on burst synchronization of a clustered neuronal network. Int. J. Nonlinear Mech. 70, 119–125 (2015)

    Article  Google Scholar 

  20. Liu, C., Wang, J., Yu, H., Deng, B., Wei, X., Sun, J., Chen, Y.: The effects of time delay on the synchronization transitions in a modular neuronal network with hybrid synapses. Chaos Solitons Fractals 47, 54–65 (2013)

    Article  MathSciNet  Google Scholar 

  21. Yu, H., Wang, J., Liu, C., Deng, B., Wei, X.: Delay-induced synchronization transitions in modular scale-free neuronal networks with hybride electrical and chemical synapses. Physica A 405, 25–34 (2014)

    Article  MathSciNet  Google Scholar 

  22. Rosenblum, M., Pikowsky, A.: Delayed feedback control of collective synchrony: an approach to suppression of pathological brain rhythms. Phys. Rev. E 70, 041904 (2004)

    Article  MathSciNet  Google Scholar 

  23. Han, X., Boyden, E.S.: Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PLoS One 2, e299 (2007)

    Article  Google Scholar 

  24. Batista, C.A.S., Viana, R.L., Ferrari, F.A.S., Lopes, S.R., Batista, A.M., Coninck, J.C.P.: Control of bursting synchronization in networks of Hodgkin-Huxley-type neurons with chemical synapses. Phys. Rev. E 87, 069905 (2013)

    Article  Google Scholar 

  25. Ibarz, B., Casado, J.M., Sanjun, M.A.F.: Map-based models in neuronal dynamics. Phys. Rep. 501, 1–74 (2011)

    Article  Google Scholar 

  26. Gosak, M., Markovic, R., Marhl, M.: The role of neural architecture and the speed of signal propagation in the process of synchronization of bursting neurons. Physica A 391, 2764–2770 (2012)

    Article  Google Scholar 

  27. Ma, J., Song, X., Jin, W., Wang, C.: Autapse-induced synchronization in a coupled neuronal network. Chaos Soliton Fractals 80, 31–38 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Xu, Y., Ying, H.P., Jia, Y., Hayat, T.: Autaptic regulation of electrical activities in neuron under electromagnetic induction. Sci. Rep. 7, 43452 (2017)

    Article  Google Scholar 

  29. Ma, J., Song, X.L., Tang, J., Wang, C.N.: Wave emitting and propagation induced by autapse in a forward feedback neuronal network. Neurocomputing 167, 378–389 (2015)

    Article  Google Scholar 

  30. Kunec, S., Bose, A.: Role of synaptic delay in organizing the behavior of networks of self-inhibiting neurons. Phys. Rev. E 63, 021908 (2001)

    Article  Google Scholar 

  31. Liang, X.M., Tang, M., Dhamala, M., Liu, Z.H.: Phase synchronization of inhibitory bursting neurons induced by distributed time delays in chemical coupling. Phys. Rev. E 80, 066202 (2009)

    Article  Google Scholar 

  32. Tang, J., Ma, J., Yi, M., Xia, H., Yang, X.Q.: Delay and diversity-induced synchronization transitions in a small-world neuronal network. Phys. Rev. E 83, 046207 (2011)

    Article  Google Scholar 

  33. Gu, H., Zhao, Z.: Dynamics of time delay-induced multiple synchronous behaviors in inhibitory coupled neurons. PLoS One 10, e0138593 (2015)

    Article  Google Scholar 

  34. Zhao, Z., Gu, H.: Thr influence of single neuron dynamics and network topology on time delay-induced mutiple synchronous behavors in inhibitory coupled network. Chaos Solitons Fractals 80, 96 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, Q., Perc, M., Duan, Z., Chen, G.: Impact of delays and rewiring on the dynamics of small-world neuronal networks with two types of coupling. Physica A 389, 3299–3306 (2010)

    Article  Google Scholar 

  36. Wang, Q., Chen, G.: Delay-induced intermittent transition of synchronization in neuronal networks with hybrid synapes. Chaos 21, 013123 (2011)

    Article  Google Scholar 

  37. Yu, W.T., Tang, J., Ma, J., Yang, X.Q.: Heterogeneous delay-induced asynchrony and resonance in a small-world neuronal network system. Europhys. Lett. 114, 50006 (2016)

    Article  Google Scholar 

  38. Turrigiano, G.G., Nelson, S.B.: Homeostatic plasticity in the developing nervous system. Nat. Rev. Neurosci. 5, 97–107 (2004)

    Article  Google Scholar 

  39. Wang, Y., Sugita, S., Sudhof, T.C., Biol, J.: The RIM/NIM family of neuronal C2 domain proteins interactions with Rab3 and a new class of Src homology 3 domain proteins. J. Biol. Chem. 275, 20033–20044 (2000)

    Article  Google Scholar 

  40. Bckers, J., Wildanger, D., Vicidomini, G., Kastrup, L., Hell, S.W.: Simultaneous multi-lifetime multi-color STED imaging for colocalization analyses. Opt. Express 19, 3130–3143 (2011)

    Article  Google Scholar 

  41. Turrigiano, G.G., Nelson, S.B.: Hebb and homeostasis in neuronal plasticity. Curr. Opin. Neurobiol. 10, 358–364 (2000)

    Article  Google Scholar 

  42. Vogels, T.P., Sprekeler, H., Zenke, F., Clopath, C., Gerstner, W.: Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks. Science 334, 1569–1573 (2011)

    Article  Google Scholar 

  43. Eichler, S.A., Meier, J.C.: E-I balance and human diseases-from molecules to networking. Front. Mol. Neurosci. 1, 2 (2008)

    Article  Google Scholar 

  44. Malina, K.C.K., Jubran, M., Katz, Y., Lampl, I.: Imbalance between exitation and inhibition in the somatosensory cortex produces postadptation facilitation. J. Neurosci. 33, 8463–8471 (2013)

    Article  Google Scholar 

  45. Sun, X.J., Li, G.F.: Stochastic multi-resonance induced by partial time delay in a Watts–Strogatz small-world neuronal network. Acta. Phys. Sin. Chin. Ed. 65, 120502 (2016)

    Google Scholar 

  46. Rulkov, N.F.: Regularization of synchronized chaotic bursts. Phys. Rev. Lett. 86, 183 (2001)

    Article  Google Scholar 

  47. Rulkov, N.F., Timofeev, I., Bazhenov, M.: Oscillations in larg-scale cortical networks: map-based model. J. Comput. Neurosci. 17, 203–223 (2004)

    Article  Google Scholar 

  48. Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  49. Gao, Z., Hu, B., Hu, G.: Stochastic resonance of small-world networks. Phys. Rev. E 65, 016209 (2001)

    Article  Google Scholar 

  50. Wang, Q.Y., Zhang, H., Perc, M., Chen, G.: Multiple firing coherence resonances in excitatory and inhibitory cpupled neurons. Commun. Nonlinear Sci. 17, 3979–3988 (2012)

    Article  MATH  Google Scholar 

  51. Wang, Q.Y., Chen, G., Perc, M.: synchronous bursts on scale-free neuronal networks with attractive and repulsive coupling. PLoS One 6, e15851 (2011)

    Article  Google Scholar 

  52. Debanne, D.: Information processing in the axon. Nat. Rev. Neurosci. 5, 304–316 (2004)

    Article  Google Scholar 

  53. Reutskiy, S., Rossoni, E., Tirozzi, B.: Conduction in bundles of demyelinated nerve fibers: computer simulation. Biol. Cybern. 89, 439–448 (2003)

    Article  MATH  Google Scholar 

  54. Ma, J., Tang, J.: A review for dynamics of collective behaviors of network of neurons. Sci. China Technol. Sci. 58, 2038–2045 (2015)

    Article  Google Scholar 

  55. Ma, J., Xu, J.: An introduction and guidance for neurodynamics. Sci. Bull. 60, 1969–1971 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank for the supports by the National Natural Science Foundation of China (Grant Nos. 11102094, 11472061, 11572084) and the Fundamental Research Funds for the Central University (No. 2015RC20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojuan Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Li, G. Synchronization transitions induced by partial time delay in a excitatory–inhibitory coupled neuronal network. Nonlinear Dyn 89, 2509–2520 (2017). https://doi.org/10.1007/s11071-017-3600-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3600-4

Keywords

Navigation