Skip to main content
Log in

Amplitude stochastic response of Rayleigh beams to randomly moving loads

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We consider the problem of the nonlinear response of a Rayleigh beam to the passage of a train of forces moving with stochastic velocity. The Fourier transform and the theory of residues are used to estimate the mean square amplitude of the beam, while the stochastic averaging method gives the stationary probability density function of the oscillations amplitude. The analysis shows that the effect of the load random velocities is highly nonlinear, leading to a nonmonotonic behavior of the mean amplitude versus the intensity of the stochastic term and of the load weight. The analytic approach is also checked with numerical simulations. The effect of loads number on the system response is numerically investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fryba, L.: Vibration of Solids and Structures Under Moving Loads. Thomas Telford, London (1999)

    Book  MATH  Google Scholar 

  2. Fryba, L.: Non-stationary response of a beam to a moving random force. J. Sound Vib. 46(3), 323–338 (1976)

    Article  MATH  Google Scholar 

  3. Zibdeh, H.S.: Stochastic vibration of an elastic beam due to random moving loads and deterministic axial forces. Eng. Struct. 17(7), 530–535 (1995)

    Article  Google Scholar 

  4. Chang, T.P.: Deterministic and random vibration of an axially loaded Timoshenko beam resting on an elastic foundation. J. Sound Vib. 178(1), 55–66 (1994)

    Article  MATH  Google Scholar 

  5. Argento, A., Morano, H.L., Scott, R.A.: Accelerating load on a rotating beam. J. Sound Vib. 116(3), 397–403 (1994)

    Google Scholar 

  6. Śniady, P., Biernat, S., Sieniawska, R., Zukowski, S.: Vibrations of the beam due to a load moving with stochastic velocity. Prob. Eng. Mech. 16(1), 53–59 (2001)

    Article  MATH  Google Scholar 

  7. Śniady, P., Sieniawska, R., Zukowski, S.: Influence of some load and structural parameters on the vibrations of a bridge beam. Arch. Civ. Eng. 44(1), 19–39 (1998)

    Google Scholar 

  8. Śniady, P.: Vibration of a beam due to a random stream of moving forces with random velocity. J. Sound Vib. 97(1), 23–33 (1984)

    Article  MATH  Google Scholar 

  9. Bryja, D., Śniady, P.: Stochastic non-linear vibrations of highway suspension bridge under inertial sprung moving load. J. Sound Vib. 216(3), 507–519 (1998)

    Article  Google Scholar 

  10. Fertis, D.G.: Nonlinear Structural Engineering: With Unique Theories and Methods to Solve Effectively Complex Nonlinear Problems. Springer, New York (2007)

    MATH  Google Scholar 

  11. Oumbé Tékam, G.T., Tchawou Tchuisseu, E.B., Kitio Kwuimy, C.A., Woafo, P.: Analysis of an electromechanical energy harvester system with geometric and ferroresonant nonlinearities. Nonlinear Dyn. 76(2), 1561–1568 (2014)

    Article  Google Scholar 

  12. Kovacic, I., Brennan, M.J.: The Duffing Equation: Nonlinear Oscillators and their Behaviour. Wiley, New york (2011)

    Book  MATH  Google Scholar 

  13. Han, S.M., Benaroya, H., Wei, T.: Dynamics of transversely vibration beams using four engineering theories. J. Sound Vib. 225(5), 935–988 (1999)

    Article  MATH  Google Scholar 

  14. Nikkhoo, A., Hassanabadi, M.E., Azam, S.E., Amiri, J.V.: Vibration of a thin rectangular plate subjected to series of moving inertial loads. Mech. Res. Commun. 55, 105–113 (2014)

    Article  Google Scholar 

  15. Tung, C.C.: Random response of highway bridges to vehicle loads. J. Eng. Mech. Div. ASCE 93, 9–94 (1967)

    Google Scholar 

  16. Tung, C.C.: Response of highway bridges to renewal traffic loads. J. Eng. Mech. Div. ASCE 95, 41–57 (1969)

    Google Scholar 

  17. Nana Nbendjo, B.R., Woafo, P.: Modelling of the dynamics of Euler’s beam by \(\phi ^6\) potential. Mech. Res. Commun. 38(8), 542–545 (2011)

    Article  MATH  Google Scholar 

  18. Iwankiewicz, R., Śniady, P.: Vibrations of a beam under a random stream of moving forces. J. Struct. Mech. 12(10), 13–26 (1984)

    Article  Google Scholar 

  19. Filatrella, G., Malomed, B.A., Pagano, S.: Noise-induced dephasing of an ac-driven Josephson junction. Phys. Rev. E65, 051116-1-7 (2002)

  20. Bobryk, R.V., Chrzeszczyk, A.: Transitions induced by bounded noise. Phys. A 358, 263–272 (2005)

    Article  Google Scholar 

  21. Datta, S., Bhattacharjee, J.: Effect of stochastic forcing on the Duffing oscillator. Phys. Lett. A 283, 323–326 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kasdin, N.J.: Runge–Kutta algorithm for the numerical integration of stochastic differential equations. J. Guid. Control Dyn. 18(1), 114–120 (1995)

    Article  MATH  Google Scholar 

  23. Knuth, D.E.: The Art of Computer Programming, vol. 2. Addison-Wesley, Boston (1969)

  24. Li, D., Xu, W., Yue, X., Lei, Y.: Bounded noise enhanced stability and resonant activation. Nonlinear Dyn. 70(3), 2237–2245 (2012)

    Article  MathSciNet  Google Scholar 

  25. Stratonovich, R.L.: Selected Topics in the Theory of random Noise. vols. 1 and 2. Gordon and Breach, New York (1963)

  26. Zhu, W.Q.: Stochastic averaging methods in random vibration. Appl. Mech. Rev. 41(5), 189 (1988)

    Article  Google Scholar 

  27. Roberts, J.B., Spanos, P.D.: Stochastic averaging: an approximate method of solving random vibration problems. Int. J. Non-Linear Mech. 21(2), 111–134 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Chamgoué, A.C., Yamapi, R., Woafo, P.: Bifurcations in a birhythmic biological system with time-delayed noise. Nonlinear Dyn. 73(4), 2157–2173 (2013)

    Article  MathSciNet  Google Scholar 

  29. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  30. Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F.: Stochastic resonance. Rev. Mod. Phys. 70(1), 223–287 (1998)

    Article  Google Scholar 

  31. Wellens, T., Shatokhin, V., Buchleitner, A.: Stochastic resonance. Rep. Prog. Phys. 67(1), 45–105 (2004)

    Article  MATH  Google Scholar 

  32. Ando, B., Graziani, S.: Adding noise to improve measurement. IEEE Instrum. Meas. Mag. 4(1), 24–31 (2001)

    Article  Google Scholar 

  33. McDonnell, M., Abbott, D.: What is stochastic resonance? Definitions, misconceptions, debates, and its relevance to biology. PLOS Comput. Biol. 5, e1000348 (2011)

    Article  MathSciNet  Google Scholar 

  34. Addesso, P., Filatrella, G., Pierro, V.: Characterization of escape times of Josephson junctions for signal detection. Phys. Rev. E 85(1), 016708 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

G.F. acknowledges partial financial support from MIUR through PON R&C (Programma Operativo Nazionale “Ricerca e Competitività”) 2007–2013 under Grant No. PON NAFASSY, PONa3_00007. Part of this work was completed during a research visit of Prof Nana Nbendjo at the University of Kassel in Germany. He is grateful to the Alexander von Humboldt Foundation for financial support within the Georg Forster Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. R. Nana Nbendjo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabejieu, L.M.A., Nbendjo, B.R.N., Filatrella, G. et al. Amplitude stochastic response of Rayleigh beams to randomly moving loads. Nonlinear Dyn 89, 925–937 (2017). https://doi.org/10.1007/s11071-017-3492-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3492-3

Keywords

Navigation