Skip to main content
Log in

Hidden chaotic attractors in fractional-order systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we present a scheme for uncovering hidden chaotic attractors in nonlinear autonomous systems of fractional order. The stability of equilibria of fractional-order systems is analyzed. The underlying initial value problem is numerically integrated with the predictor-corrector Adams-Bashforth-Moulton algorithm for fractional-order differential equations. Three examples of fractional-order systems are considered: a generalized Lorenz system, the Rabinovich-Fabrikant system and a non-smooth Chua system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Note that even fractional-order dynamics allow to describe a real object more accurately than classical “integer-order” dynamics, as proved recently for the existence of stable cycles in systems of fractional order to be impossible [35, 36].

  2. Recently, based on philosophical arguments rather than a mathematical point of view, some researchers questioned the appropriateness of using initial conditions of the classical form in the Caputo derivative [41]. However, it should be emphasized that, in practical (physical) problems, physically interpretable initial conditions are necessary and Caputo’s derivative is a fully justified tool [42].

  3. The geometric multiplicity represents the dimension of the eigenspace of the corresponding eigenvalues.

  4. In many cases, one can simplify this procedure and consider instead a path in the space of parameters, such that the starting point of the path corresponds to a self-excited attractor.

References

  1. Leonov, G.A., Kuznetsov, N.V., Vagaitsev, V.I.: Hidden attractor in smooth Chua systems. Phys. D 241(18), 1482–1486 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Leonov, G., Kuznetsov, N., Mokaev, T.: Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion. Eur. Phy. J. Spec. Top. 224(8), 1421–1458 (2015)

    Article  Google Scholar 

  3. Leonov, G.A., Kuznetsov, N.V.: Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits. Int. J. Bifurc. Chaos 23, 1330002 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kuznetsov, N.V.: Hidden attractors in fundamental problems and engineering models: a short survey. In: Lecture Notes Electrical Engineering, vol. 371, p. 13. (2016)

  5. Dudkowski, D., Prasad, A., Kapitaniak, T.: Perpetual points and hidden attractors in dynamical systems. Phys. Lett. A 379(40–41), 2591–2596 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Jafari, S., Sprott, J.C., Nazarimehr, F.: Recent new examples of hidden attractors. Eur. Phy. J. Spec. Top. 224(8), 1469–1476 (2015)

    Article  Google Scholar 

  7. Shahzad, M., Pham, V.T., Ahmad, M., Jafari, S., Hadaeghi, F.: Synchronization and circuit design of a chaotic system with coexisting hidden attractors. Eur. Phy. J. Spec. Top. 224(8), 1637–1652 (2015)

    Article  Google Scholar 

  8. Brezetskyi, S., Dudkowski, D., Kapitaniak, T.: Rare and hidden attractors in Van der Pol-Duffing oscillators. Eur. Phy. J. Spec. Top. 224(8), 1459–1467 (2015)

    Article  Google Scholar 

  9. Cafagna, D., Grassi, G.: Fractional-order systems without equilibria: the first example of hyperchaos and its application to synchronization. Chin. Phys. B 24(8), 080502 (2015)

    Article  Google Scholar 

  10. Zhusubaliyev, Z.T., Mosekilde, E.: Multistability and hidden attractors in a multilevel DC/DC converter. Math. Comput. Simul. 109, 32–45 (2015)

    Article  MathSciNet  Google Scholar 

  11. Chen, M., Li, M., Yu, Q., Bao, B., Xu, Q., Wang, J.: Dynamics of self-excited attractors and hidden attractors in generalized memristor-based Chua s circuit. Nonlinear Dyn. 81(1–2), 215–226 (2015)

    Article  MathSciNet  Google Scholar 

  12. Wang, Z., Sun, W., Wei, Z., Zhang, S.: Dynamics and delayed feedback control for a 3D jerk system with hidden attractor. Nonlinear Dyn. 82(1–2), 577–588 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wei, Z., Wang, R., Liu, A.: A new finding of the existence of hidden hyperchaotic attractors with no equilibria. Math. Comput. Simul. 100, 13–23 (2014)

    Article  MathSciNet  Google Scholar 

  14. Sprott, J.C., Jafari, S., Pham, V.-T., Hosseini, Z.S.: A chaotic system with a single unstable node. Phys. Lett. A 379(36), 2030–2036 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Heath, W.P., Carrasco, J., de la Sen, M.: Second-order counterexamples to the discrete-time Kalman conjecture. Automatica 60, 140–144 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kuznetsov, N.V., Leonov, G.A., Mokaev, T.N.: Hidden attractor in the Rabinovich system, arXiv:1504.04723v1 (2015)

  17. Kuznetsov, N.V., Leonov, G.A.: Hidden attractors in dynamical systems: systems with no equilibria, multistability and coexisting attractors. In: IFAC Proceedings Volumes, 19th IFAC World Congress, vol. 47(3), pp. 5445–5454 (2014)

  18. Danca, M.-F.: Hidden transient chaotic attractors of Rabinovich-Fabrikant system. Nonlinear Dyn. 86(2), 1263–1270 (2016)

    Article  MathSciNet  Google Scholar 

  19. Leonov, G.A., Kuznetsov, N.V.: On differences and similarities in the analysis of Lorenz, Chen, and Lu systems. Appl. Math. Comput. 256, 334–343 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Kuznetsov, N.V., Kuznetsova, O.A, Leonov, G.A., Neittaanmuaki, P., Yuldashev, M.V., Yuldashev, R.V.: Limitations of the classical phase-locked loop analysis. In: Proceeding-IEEE International Symposion on Circuits and Systems, pp. 533-536, Art. No. 7168688 (2015)

  21. Leonov, G.A., Kuznetsov, N.V., Kiseleva, M.A., Solovyeva, E.P., Zaretskiy, A.M.: Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor. Nonlinear Dyn. 77(1–2), 277–288 (2014)

    Article  Google Scholar 

  22. Andrievsky, B.R., Kuznetsov, N.V., Leonov, G.A., Pogromsky, A.Y.: Hidden oscillations in aircraft flight control system with input saturation. IFAC Proc. Vol. 46(12), 75–79 (2013)

    Article  Google Scholar 

  23. Sabatier, J., Agrawal, O.P., Machado, Tenreiro Machado, J.A.: Advances in fractional calculus; Theoretical developments and applications, Physics and Engineering Series, Springer, Berlin, (2007)

  24. Scalas, E., Gorenflo, R., Mainardi, F.: Fractional calculus and continuous-time finance. Phys. A 285(1–4), 376–384 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Magin, R.L.: Fractional Calculus in Bioengineering. Begell House, Danbury (2006)

    Google Scholar 

  26. Atanacković, T.M.: On a distributed derivative model of a viscoelastic body. C. R. Mecanique 331(10), 687–692 (2003)

    Article  MATH  Google Scholar 

  27. Bagley, R.L., Calico, R.A.: Fractional order state equations for the control of viscoelasticallydamped structures. J. Guid. Control Dyn. 14(2), 304–311 (1991)

    Article  Google Scholar 

  28. Oustaloup, A.: La Derivation Non Entiere: Theorie, Synthese et Applications. Hermes, Paris (1995)

    MATH  Google Scholar 

  29. Podlubny, I., Petrás̆, I., Vinagre, B.M., O’Leary, P., Dorcák, K.: Analogue realizations of fractional-order controllers. Nonlinear Dyn. 29(1), 281–296 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Laskin, N.: Fractional market dynamics. Phys. A 287(3–4), 482–492 (2000)

    Article  MathSciNet  Google Scholar 

  31. Kusnezov, D., Bulgac, A., Dang, G.D.: Quantum Lévy processes and fractional kinetics. Phys. Rev. Lett. 82(6), 1136–1139 (1999)

    Article  Google Scholar 

  32. Danca, M.-F., Diethlem, K.: Fractional-order attractors synthesis via parameter switchings. Commun. Nonlinear Sci. 15(12), 3745–3753 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Danca, M.-F., Garrappa, R., Tang, W.K.S., Chen, G.: Sustaining stable dynamics of a fractional-order chaotic financial system by parameter switching. Comput. Math. Appl. 66(5), 702–716 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Faieghi, M.R., Delavari, H.: Chaos in fractional-order Genesio-Tesi system and its synchronization. Commun. Nonlinear. Sci. 17(2), 731–741 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tavazoei, M.S., Haeri, M.: A proof for non existence of periodic solutions in time invariant fractional order systems. Automatica 45(8), 1886–1890 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kaslik, E., Sivasundaram, S.: Non-existence of periodic solutions in fractional-order dynamical systems and a remarkable difference between integer and fractional-order derivatives of periodic functions. Nonlinear Anal. Real 13(3), 1489–1497 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  38. Diethelm, K.: The Analysis of Fractional Differential Equations. Springer-Verlag, Berlin (2010)

    Book  MATH  Google Scholar 

  39. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, Amsterdam (2006)

    MATH  Google Scholar 

  40. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos, vol. 3. World Scientific (2012)

  41. Hartley, T.T., Lorenzo, C.F., Trigeassou, J.C., Maamri, N.: Equivalence of history-function based and infinite-dimensional-state initializations for fractional-order operators. J. Comput. Nonlin. Dyn. 8(4), 041014 (2013)

    Article  Google Scholar 

  42. Diethelm, K.: An extension of the well-posedness concept for fractional differential equations of Caputo s type. Appl. Anal. 93, 2126 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Diethelm, K., Ford, N.J., Freed, A.D.: A Predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29(1), 3–22 (2002)

  44. Tavazoei, M.S., Haeri, M.: Chaotic attractors in incommensurate fractional order systems. Phys. D 327(20), 2628–2637 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  45. Tavazoei, M.S., Haeri, M.: A necessary condition for double scroll attractor existence in fractional-order systems. Phys. Lett. A 367(1–2), 102–113 (2007)

    Article  MATH  Google Scholar 

  46. Leonov, G.A., Kuznetsov, N.V., Mokaev, T.N.: Hidden attractor and homoclinic orbit in Lorenz-like system describing convective fluid motion in rotating cavity. Commun. Nonlinear. Sci. 28, 166 (2015)

    Article  MathSciNet  Google Scholar 

  47. Rabinovich, M.: Stochastic autooscillations and turbulence. Uspehi Physicheskih Nauk 125(1), 123–168 (1978). [in Russian]

  48. Pikovski, A.S., Rabinovich, M.I., Trakhtengerts, V.I.: Onset of stochasticity in decay confinement of parametric instability. Sov. Phys. JETP 47, 715–719 (1978)

    Google Scholar 

  49. Glukhovsky, A.B., Dolzhansky, F.V.: Three component models of convection in a rotating fluid. Izv. Acad. Sci. USSR Atmos. Ocean. Phys. 16, 311–318 (1980)

    MathSciNet  Google Scholar 

  50. Denisov, G.G.: On the rigid body rotation in resisting medium. Izv. Akad. Nauk SSSR Mekh. Tverd. Tela 4, 37–43 (1989). (in Russian)

  51. Glukhovsky, A.B.: Nonlinear systems that are superpositions of gyrostats. Sov. Phys. Dokl. 27(10), 823–825 (1982)

    MATH  Google Scholar 

  52. Dovzhenko, V.A., Dolzhansky, F.V.: Generating of the Vortices in Shear Flows. Theory and Experiment. Nauka, Moscow (1987). (in Russian)

  53. Danca, M.-F., Feckan, M., Kuznetsov, N., Chen, G.: Looking more closely at the Rabinovich-Fabrikant system. Int. J. Bifurc. Chaos 26(2), 1650038 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  54. Danca, M.-F., Kuznetsov, N., Chen, G.: Unusual dynamics and hidden attractors of the Rabinovich-Fabrikant system. submitted to Nonlinear Dynamic

  55. Kuznetsov, N.V.: Hidden attractors in fundamental problems and engineering models, arXiv:1510.04803v1 [nlin.CD]

  56. Kuznetsov, N., Kuznetsov, O., Leonov, G., Vagaitsev, V.: Analytical-numerical method for attractor localization of generalized Chua’s system. IFAC Proc. Vol. 43(11), 29–33 (2010)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

MF Danca is supported by Tehnic B SRL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius-F. Danca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danca, MF. Hidden chaotic attractors in fractional-order systems. Nonlinear Dyn 89, 577–586 (2017). https://doi.org/10.1007/s11071-017-3472-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3472-7

Keywords

Navigation