Skip to main content
Log in

Modal asymptotic analysis of sub-harmonic and quasi-periodic flexural vibrations of beams with cracks

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Nonlinear finite-DOF dynamical system is derived to describe the beam vibrations with transversal crack. The beam deflections are expanded by using the eigenmodes and contact parameter. The Galerkin method is applied to the partial differential equation, which describes the structure vibrations. Two- and three-DOF nonlinear dynamical systems with internal resonance are analyzed. The multiple scales method is used to investigate both the principle second resonance and the combination one. The resonance quasi-periodic and sub-harmonic motions are analyzed. The quasi-periodic motions are arisen due to the Neimark–Sacker bifurcation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Luzzato, E.: Approximate computation of non-linear effects in a vibrating cracked beam. J. Sound Vib. 265, 745–763 (2003)

    Article  Google Scholar 

  2. Christides, S., Barr, A.D.S.: One-dimensional theory of cracked Bernoulli–Euler beams. Int. J. Mech. Sci. 26, 639–648 (1984)

    Article  Google Scholar 

  3. Shen, M.-H.H., Pierre, C.: Free vibrations of beams with a single-edge crack. J. Sound Vib. 170, 237–259 (1994)

    Article  MATH  Google Scholar 

  4. Shen, M.-H.H., Chu, Y.C.: Vibrations of beams with a fatigue crack. Comput. Struct. 45, 79–93 (1992)

    Article  Google Scholar 

  5. Chu, Y.C., Shen, M.-H.H.: Analysis of forced bilinear oscillators and the application to cracked beam dynamics. AIAA J. 30, 2512–2519 (1992)

    Article  MATH  Google Scholar 

  6. Chondros, T.G., Dimarogonas, A.D., Yao, J.: A continuous cracked beam vibration theory. J. Sound Vib. 215, 17–34 (1998)

    Article  MATH  Google Scholar 

  7. Ng, T.Y., Lam, K.Y., Li, H.: Dynamic stability of rotating blades with transverse cracks. Shock Vib. 10, 187–194 (2003)

    Article  Google Scholar 

  8. Carneiro, G.N., Ribeiro, P.: Vibrations of beams with a breathing crack and large amplitude displacements. J. Mech. Eng. Sci. 230, 34–54 (2016)

  9. Chati, M., Rand, R., Mukherjee, S.: Modal analysis of a cracked beam. J. Sound Vib. 207, 249–270 (1997)

    Article  MATH  Google Scholar 

  10. Caddemi, S., Cali, I., Marletta, M.: The non-linear dynamic response of the Euler–Bernoulli beam with an arbitrary number of switching cracks. Int. J. Non Linear Mech. 45, 714–726 (2010)

    Article  Google Scholar 

  11. Tsyfansky, S.L., Beresnevich, V.I.: Detection of fatigue cracks in flexible geometrically non-linear bars by vibration monitoring. J. Sound Vib. 213, 159–168 (1998)

    Article  Google Scholar 

  12. Bikri, KEl, Benamar, R., Bennouna, M.M.: Geometrically non-linear free vibrations of clamped–clamped beams with an edge crack. Comput. Struct. 84, 485–502 (2006)

    Article  Google Scholar 

  13. Ballo, I.: Non-linear effects of vibration of a continuous transverse cracked slender shaft. J. Sound Vib. 217, 321–333 (1998)

    Article  Google Scholar 

  14. Plakhtienko, N.P., Yasinskii, S.A.: Resonance of second order in vibrations of a beam containing a transverse crack. Strength Mater. 27, 146–152 (1995)

    Article  Google Scholar 

  15. Sinha, J.K., Friswell, M.I., Edwards, S.: Simplified models for the location of cracks in beam structures using measured vibration data. J. Sound Vib. 251, 13–38 (2002)

    Article  Google Scholar 

  16. Stachowicz, W.M., Krawczuk, M.: Analysis of the effect of cracks on the natural frequencies of a cantilever beam. J. Sound Vib. 150, 191–201 (1991)

    Article  Google Scholar 

  17. Avramov, K.V.: Nonlinear beam oscillations excited by lateral force at combination resonance. J. Sound Vib. 257, 337–359 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Avramov, K.V.: Bifurcations of parametric oscillations of beams with three equilibrium. Acta Mech. 164, 115–138 (2003)

    Article  MATH  Google Scholar 

  19. Avramov, K.V., Pierre, C., Shiraeva, N.: Flexural-flexural-torsional nonlinear vibrations of pre-twisted rotating beams with asymmetric cross section. J. Vib. Control 13, 329–364 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Andreaus, U., Casini, P., Vestroni, F.: Non-linear dynamics of a cracked cantilever beam under harmonic excitation. Int. J. Non Linear Mech. 42, 566–575 (2007)

    Article  Google Scholar 

  21. Bovsunovskii, A.P., Bovsunovskii, O.A.: Application of nonlinear resonances for the diagnostics of closing cracks in rodlike elements. Strength Mater. 42, 331–342 (2010)

    Article  Google Scholar 

  22. Bovsunovsky, A.P., Surace, C.: Considerations regarding superharmonic vibrations of a cracked beam and the variation in damping caused by the presence of the crack. J. Sound Vib. 288, 865–886 (2005)

    Article  Google Scholar 

  23. Pugno, N., Surace, C.: Evaluation of the non-linear dynamic response to harmonic excitation of a beam with several breathing cracks. J. Sound Vib. 235, 749–762 (2000)

    Article  Google Scholar 

  24. Andreaus, U., Baragatti, P.: Cracked beam identification by numerically analysing the nonlinear behaviour of the harmonically forced response. J. Sound Vib. 330, 721–742 (2011)

    Article  Google Scholar 

  25. Saavedra, P.N., Cuitino, L.A.: Crack detection and vibration behavior of cracked beams. Comput. Struct. 79, 1451–1459 (2001)

    Article  Google Scholar 

  26. Qian, G.L., Gu, S.N., Jiang, J.S.: The dynamic behavior and crack detection of a beam with a crack. J. Sound Vib. 138, 233–243 (1990)

    Article  Google Scholar 

  27. Kisa, M., Brandon, J.: The effects of closure of cracks on the dynamics of a cracked cantilever beam. J. Sound Vib. 238, 1–18 (2000)

    Article  Google Scholar 

  28. Dimarogonas, A.D.: Vibration of cracked structures: a state of the art review. Eng. Fract. Mech. 55, 831–857 (1996)

    Article  Google Scholar 

  29. Bovsunovsky, A., Surace, C.: Non-linearities in the vibrations of elastic structures with a closing crack: a state of the art review. Mech. Syst. Signal Process. 6263, 129–148 (2015)

  30. Uspensky, B., Avramov, K.: On nonlinear normal modes of piecewise linear systems free vibrations. J. Sound Vib. 333, 3252–3256 (2014)

    Article  Google Scholar 

  31. Uspensky, B., Avramov, K.: Nonlinear modes of essential nonlinear piecewise linear systems under the action of periodic excitation. Nonlinear Dyn. 76, 1151–1156 (2014)

    Article  Google Scholar 

  32. Mihlin, Y.V., Avramov, K.V.: Nonlinear normal modes for vibrating mechanical systems. Review of theoretical developments. Appl. Mech. Rev. 63, 4–20 (2010)

    Google Scholar 

  33. Avramov, K., Mihlin, Yu.: Review of applications of nonlinear normal modes for vibrating mechanical systems. Appl. Mech. Rev. 65, 4–25 (2013)

    Article  Google Scholar 

  34. Ji, J.C., Hansen, C.H.: On the approximate solution of a piecewise nonlinear oscillator under super-harmonic resonance. J. Sound Vib. 283, 467–474 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1988)

    MATH  Google Scholar 

  36. Wiggins, S.: Introduction to Applied Non-Linear Dynamical Systems and Chaos. Springer, New York (1990)

    Book  MATH  Google Scholar 

  37. Sundermeyer, J.N., Weaver, R.L.: On crack identification and characterization in a beam by non-linear vibration analysis. J. Sound Vib. 183, 857–871 (1995)

    Article  MATH  Google Scholar 

  38. Narkis, Y.: Identification of crack location in vibrating simply supported beams. J. Sound Vib. 172, 549–558 (1994)

    Article  MATH  Google Scholar 

  39. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Avramov.

Appendix: Characteristics of the beam cross section

Appendix: Characteristics of the beam cross section

The crack function for the beam with rectangular cross section has the following form:

$$\begin{aligned} f\left( {x,z} \right) =\left[ {z-m\left( {z+\frac{a}{2}} \right) H\left( {d-a-z} \right) } \right] \exp \left[ {-\alpha \frac{\left| {x-x_c } \right| }{d}} \right] ,\nonumber \\ \end{aligned}$$
(47)

where \(H\left( {d-a-z} \right) \) is the Heaviside function. The parameter \(\alpha \) characterizes the rate of the stress decay. This parameter is calculated in the paper [3]: \(\alpha =1.276\). The parameter m is determined as [4]:

$$\begin{aligned} m=\left\{ {1+\frac{3}{4}\left( {\frac{a}{d}} \right) ^{2}-\frac{3}{2}\frac{a}{d}-\frac{1}{8}\left( {\frac{a}{d}} \right) ^{3}} \right\} ^{-1}.\left( {A1.2} \right) \nonumber \\ \end{aligned}$$
(48)

The displacement function \(\varphi \left( {x,z} \right) \) takes the following form:

$$\begin{aligned} \varphi \left( {x,z} \right) =\left[ {z-\left( {z+\frac{a}{2}} \right) H\left( {d-a-z} \right) } \right] \exp \left[ {-2\beta \frac{\left| {x-x_c } \right| }{d}} \right] .\nonumber \\ \end{aligned}$$
(49)

The parameter \(\beta \) is calculated by Shen and Pierre [3]: \(\beta =21.94\).

The parameters of the system (4) are presented in the form of the double integrals:

$$\begin{aligned}&I=\mathop \int \limits _A z^{2}{} { dA};~ L_1 =\mathop \int \limits _A f\varphi { dA};\quad K=\mathop \int \limits _A zfdA;\nonumber \\&K_1 =\mathop \int \limits _A z\varphi dA;\quad L_3 =\mathop \int \limits _A f^{I}\varphi { dA};\nonumber \\&L_2 =\mathop \int \limits _A f\varphi ^{I}dA;\quad L=\mathop \int \limits _A f^{2}dA;\quad K_2 =\mathop \int \limits _A z\varphi ^{I}dA;\nonumber \\&L_4 =\mathop \int \limits _A f^{II}\varphi dA;\quad L_5 =\mathop \int \limits _A f^{I}\varphi ^{I}dA;\nonumber \\&Q_1 =\frac{I+\gamma \left( {L_1 -K-K_1 } \right) }{I+\gamma \left( {L-2K} \right) }, \end{aligned}$$
(50)

where \(f^{I}=\frac{\hbox {d}f}{\hbox {d}x}\). The functions (A.1, A.2, A.3) are substituted into the equations (A.4). As a result, it is obtained:

$$\begin{aligned}&I=\frac{4}{3}bd^{3};\\&L_1 =I\left( {1-\frac{1}{m}} \right) exp\left( {-2\beta \frac{\left| {x-x_c } \right| }{d}} \right) exp\left( {-\alpha \frac{\left| {x-x_c } \right| }{d}} \right) ;\\&K=0;\\&K_1 =I\left( {1-\frac{1}{m}} \right) exp\left( {-2\beta \frac{\left| {x-x_c } \right| }{d}} \right) ;\\&L_3 =-\frac{\alpha }{d}I\left( {1-\frac{1}{m}} \right) exp\left( {-\alpha \frac{\left| {x-x_c } \right| }{d}} \right) exp\left( {-2\beta \frac{\left| {x-x_c } \right| }{d}} \right) ;\\&L_2 =-\frac{2\beta }{d}I\left( {1-\frac{1}{m}} \right) exp\left( {-2\beta \frac{\left| {x-x_c } \right| }{d}} \right) exp\left( {-\alpha \frac{\left| {x-x_c } \right| }{d}} \right) ;\\&L=\left( {m-1} \right) Iexp\left( {-2\alpha \frac{\left| {x-x_c } \right| }{d}} \right) ;\\&K_2 =K_1^I ;\\&L_4 =\frac{\alpha ^{2}}{d^{2}}I\left( {1-\frac{1}{m}} \right) exp\left( {-\alpha \frac{\left| {x-x_c } \right| }{d}} \right) exp\left( {-2\beta \frac{\left| {x-x_c } \right| }{d}} \right) ;\\&L_5 =\frac{2\beta \alpha }{d^{2}}I\left( {1-\frac{1}{m}} \right) exp\left( {-2\beta \frac{\left| {x-x_c } \right| }{d}} \right) exp\left( {-\alpha \frac{\left| {x-x_c } \right| }{d}} \right) . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avramov, K., Raimberdiyev, T. Modal asymptotic analysis of sub-harmonic and quasi-periodic flexural vibrations of beams with cracks. Nonlinear Dyn 88, 1213–1228 (2017). https://doi.org/10.1007/s11071-016-3305-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3305-0

Keywords

Navigation