Skip to main content
Log in

Synchronization of uncertain fractional-order hyperchaotic systems by using a new self-evolving non-singleton type-2 fuzzy neural network and its application to secure communication

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a robust control method for synchronization of the uncertain fractional-order hyperchaotic systems by using a new self-evolving non-singleton type-2 fuzzy neural network (SE-NT2FNN). The proposed SE-NT2FNNs are used for estimating the unknown functions in the dynamic of system. The effects of approximation error and external disturbance are eliminated by linear matrix inequality control scheme. The proposed SE-NT2FNN has one rule initially, the new rules and membership functions (MFs) are added based on the proposed simple algorithm and unnecessary rules and MFs are deleted. The proposed synchronization scheme is applied in a secure communication scheme. To show the effectiveness of the proposed method, three simulation examples are given. The results are compared with other methods, and it showed that the proposed control scheme results in the better performance than other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Li, C., Peng, G.: Chaos in Chen’s system with a fractional order. Chaos Solitons Fractals 22(2), 443–450 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Hegazi, A., Matouk, A.: Dynamical behaviors and synchronization in the fractional order hyperchaotic Chen system. Appl. Math. Lett. 24(11), 1938–1944 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Matouk, A.: Stability conditions, hyperchaos and control in a novel fractional order hyperchaotic system. Phys. Lett. A 373(25), 2166–2173 (2009)

    Article  MATH  Google Scholar 

  4. Wang, X.-Y., Song, J.-M.: Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control. Commun. Nonlinear Sci. Numer. Simul. 14(8), 3351–3357 (2009)

    Article  MATH  Google Scholar 

  5. Li, C., Liao, X., Yu, J.: Synchronization of fractional order chaotic systems. Phys. Rev. E 68(6), 067203 (2003)

    Article  Google Scholar 

  6. Wu, G.-C., Baleanu, D.: Discrete fractional logistic map and its chaos. Nonlinear Dyn. 75(1–2), 283–287 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Wu, G.-C., Baleanu, D., Xie, H.-P., Chen, F.-L.: Chaos synchronization of fractional chaotic maps based on the stability condition. Phys. A 460, 374–383 (2016)

    Article  MathSciNet  Google Scholar 

  8. Wu, G.-C., Baleanu, D.: Chaos synchronization of the discrete fractional logistic map. Sig. Process. 102, 96–99 (2014)

    Article  Google Scholar 

  9. Muthukumar, P., Balasubramaniam, P., Ratnavelu, K.: Fast projective synchronization of fractional order chaotic and reverse chaotic systems with its application to an affine cipher using date of birth (DOB). Nonlinear Dyn. 80(4), 1883–1897 (2015)

    Article  MATH  Google Scholar 

  10. Zhou, P., Bai, R.: The adaptive synchronization of fractional-order chaotic system with fractional-order \(1<q<2\) via linear parameter update law. Nonlinear Dyn. 80(1–2), 753–765 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Maheri, M., Arifin, N.M.: Synchronization of two different fractional-order chaotic systems with unknown parameters using a robust adaptive nonlinear controller. Nonlinear Dyn. 85(2), 825–838 (2016)

  12. Sun, W., Wang, S., Wang, G., Wu, Y.: Lag synchronization via pinning control between two coupled networks. Nonlinear Dyn. 79(4), 2659–2666 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Padula, F., Alcántara, S., Vilanova, R., Visioli, A.: \(h_\infty \) control of fractional linear systems. Automatica 49(7), 2276–2280 (2013)

    Article  MathSciNet  Google Scholar 

  14. Fadiga, L., Farges, C., Sabatier, J., Santugini, K.: \({H_\infty }\) output feedback control of commensurate fractional order systems. In: Proceedings of the European Control Conference, pp. 4538–4543 (2013)

  15. Li, J.-N., Zhang, Y., Pan, Y.-J.: Mean-square exponential stability and stabilisation of stochastic singular systems with multiple time-varying delays. Circuits Syst. Signal Process. 34(4), 1187–1210 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, J.-N., Li, L.-S.: Mean-square exponential stability for stochastic discrete-time recurrent neural networks with mixed time delays. Neurocomputing 151, 790–797 (2015)

    Article  Google Scholar 

  17. Li, B., Zhang, X.: Observer-based robust control of (\(0 < \alpha < 1\)) fractional-order linear uncertain control systems. IET Control Theory Appl. 10(14), 1724–1731 (2016)

    Article  MathSciNet  Google Scholar 

  18. Ibrir, S., Bettayeb, M.: New sufficient conditions for observer-based control of fractional-order uncertain systems. Automatica 59, 216–223 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Khamsuwan, P., Kuntanapreeda, S.: A linear matrix inequality approach to output feedback control of fractional-order unified chaotic systems with one control input. J. Comput. Nonlinear Dyn. 11(5), 051021 (2016)

    Article  Google Scholar 

  20. Li, J.-N., Bao, W.-D., Li, S.-B., Wen, C.-L., Li, L.-S.: Exponential synchronization of discrete-time mixed delay neural networks with actuator constraints and stochastic missing data. Neurocomputing 207, 700–707 (2016)

    Article  Google Scholar 

  21. Chen, L., Wu, R., He, Y., Chai, Y.: Adaptive sliding-mode control for fractional-order uncertain linear systems with nonlinear disturbances. Nonlinear Dyn. 80(1–2), 51–58 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhang, R., Yang, S.: Robust synchronization of two different fractional-order chaotic systems with unknown parameters using adaptive sliding mode approach. Nonlinear Dyn. 71(1–2), 269–278 (2013)

    Article  MathSciNet  Google Scholar 

  23. Sopasakis, P., Ntouskas, S., Sarimveis, H.: Robust model predictive control for discrete-time fractional-order systems. In: 23th Mediterranean Conference on Control and Automation (MED), 2015, pp. 384–389. IEEE (2015)

  24. Balasubramaniam, P., Muthukumar, P., Ratnavelu, K.: Theoretical and practical applications of fuzzy fractional integral sliding mode control for fractional-order dynamical system. Nonlinear Dyn. 80(1–2), 249–267 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, Y., Li, J.: Stability analysis of fractional order systems based on T–S fuzzy model with the fractional order \(\alpha {:}\,0 < \alpha < 1\). Nonlinear Dyn. 78(4), 2909–2919 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Boulkroune, A., Bouzeriba, A., Bouden, T.: Fuzzy generalized projective synchronization of incommensurate fractional-order chaotic systems. Neurocomputing 173, 606–614 (2015)

    Article  MATH  Google Scholar 

  27. Lin, T.-C., Kuo, C.-H.: H-infinity synchronization of uncertain fractional order chaotic systems: adaptive fuzzy approach. ISA Trans. 50(4), 548–556 (2011)

    Article  Google Scholar 

  28. Pratama, M., Lu, J., Zhang, G.: Evolving type-2 fuzzy classifier. IEEE Trans. Fuzzy Syst. 24(3), 574–589 (2016)

    Article  Google Scholar 

  29. Tavoosi, J., Suratgar, A.A., Menhaj, M.B.: Nonlinear system identification based on a self-organizing type-2 fuzzy RBFN. Eng. Appl. Artif. Intell. 54, 26–38 (2016)

    Article  Google Scholar 

  30. Mohammadzadeh, A., Ghaemi, S.: A modified sliding mode approach for synchronization of fractional-order chaotic/hyperchaotic systems by using new self-structuring hierarchical type-2 fuzzy neural network. Neurocomputing 191, 200–213 (2016)

    Article  Google Scholar 

  31. Doctor, F., Syue, C.-H., Liu, Y.-X., Shieh, J.-S., Iqbal, R.: Type-2 fuzzy sets applied to multivariable self-organizing fuzzy logic controllers for regulating anesthesia. Appl. Soft Comput. 38, 872–889 (2016)

    Article  Google Scholar 

  32. Mendez, G., Juarez, I., Leduc, L., Soto, R., Cavazos, A.: Temperature prediction in hot strip mill bars using a hybrid type-2 fuzzy algorithm. Int. J. Simul. Syst. Sci. Technol. 6(9), 33–43 (2005)

  33. Méndez, G.M., De los Angeles Hernandez, M.: Hybrid learning for interval type-2 fuzzy logic systems based on orthogonal least-squares and back-propagation methods. Inf. Sci. 179(13), 2146–2157 (2009)

    Article  Google Scholar 

  34. MéNdez, G.M., De Los Angeles HernáNdez, M.: Hybrid learning mechanism for interval A2-C1 type-2 non-singleton type-2 Takagi–Sugeno–Kang fuzzy logic systems. Inf. Sci. 220, 149–169 (2013)

    Article  Google Scholar 

  35. Matignon, D.: Stability results for fractional differential equations with applications to control processing. In: Computational Engineering in Systems Applications, vol. 2, pp. 963–968. Citeseer (1996)

  36. Karnik, N.N., Mendel, J.M., Liang, Q.: Type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 7(6), 643–658 (1999)

    Article  Google Scholar 

  37. Sabatier, J., Moze, M., Oustaloup, A.: On fractional systems \({H_\infty }\)-norm computation. In: 44th IEEE Conference on Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC’05, pp. 5758–5763. IEEE (2005)

  38. Fadiga, L., Farges, C., Sabatier, J., Moze, M.: On computation of \({H_\infty }\) norm for commensurate fractional order systems. In: 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), 2011, pp. 8231–8236. IEEE (2011)

  39. Li, C., Chen, A., Ye, J.: Numerical approaches to fractional calculus and fractional ordinary differential equation. J. Comput. Phys. 230(9), 3352–3368 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Li, C., Wang, Y.: Numerical algorithm based on adomian decomposition for fractional differential equations. Comput. Math. Appl. 57(10), 1672–1681 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Cao, J., Xu, C.: A high order schema for the numerical solution of the fractional ordinary differential equations. J. Comput. Phys. 238, 154–168 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Yan, Y., Pal, K., Ford, N.J.: Higher order numerical methods for solving fractional differential equations. BIT Numer. Math. 54(2), 555–584 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Valerio, D.: Toolbox ninteger for Matlab, v. 2.3, September 2005 (2005)

  44. Matouk, A., Elsadany, A.: Achieving synchronization between the fractional-order hyperchaotic Novel and Chen systems via a new nonlinear control technique. Appl. Math. Lett. 29, 30–35 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Aghababa, M.P.: Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique. Nonlinear Dyn. 69(1–2), 247–261 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  46. Xu, B.: Chaotic synchronization of nonlinear-coupled fractional-order Liu system and secure communication. In: 2015 International Symposium on Computers and Informatics. Atlantis Press (2015)

  47. Zhen, W., Xia, H., Ning, L., Xiao-Na, S.: Image encryption based on a delayed fractional-order chaotic logistic system. Chin. Phys. B 21(5), 050506 (2012)

    Article  Google Scholar 

  48. Wu, G.-C., Baleanu, D., Lin, Z.-X.: Image encryption technique based on fractional chaotic time series. J. Vib. Control 22(8), 2092–2099 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sehraneh Ghaemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadzadeh, A., Ghaemi, S. Synchronization of uncertain fractional-order hyperchaotic systems by using a new self-evolving non-singleton type-2 fuzzy neural network and its application to secure communication. Nonlinear Dyn 88, 1–19 (2017). https://doi.org/10.1007/s11071-016-3227-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3227-x

Keywords

Navigation