Skip to main content

Advertisement

Log in

Reliable sampled-data vibration control for uncertain flexible spacecraft with frequency range limitation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper deals with the problem of reliable finite frequency vibration control for flexible spacecraft subject to torque constraint, actuator failure and linear fractional transformation (LFT) uncertainty. The practical sampled-data control signal is converted into a continuous-time input with time-varying delay. Since the main vibration energy of flexible spacecraft is dominated by low-frequency vibration modes lying in a specific frequency band, a novel reliable robust \(H_\infty \) output feedback controller with frequency constraint is employed here to suppress these resonance modes. Compared with classic full frequency scheme, finite frequency algorithm achieves a lower upper bound of vibration reduction performance even under the circumstance of torque constraint, actuator failure and LFT uncertainty. By convex optimization techniques, the problem of seeking admissible controller is transformed into the feasibility of linear matrix inequalities. The merits and effectiveness of proposed control algorithm are confirmed by an illustrative design example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Preumont, A.: Vibration Control of Active Structures: An Introduction, 3rd edn. Springer, Berlin (2012)

    MATH  Google Scholar 

  2. Liu, H., Guo, L., Zhang, Y.: An anti-disturbance PD control shceme for attitude control and stabilization of flexible spacecraft. Nonlinear Dyn. 67, 2081–2088 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M., Schröder, J.: Diagnosis and Fault-Tolerant Control. Springer, Berlin (2006)

    MATH  Google Scholar 

  4. Ye, D., Yang, G.H.: Adaptive fault-tolerant tracking control against actuator faults with application to flight control. IEEE Trans. Control Syst. Technol. 14, 1088–1096 (2006)

    Article  Google Scholar 

  5. Zhang, R., Qiao, J., Li, T., Guo, L.: Robust fault-tolerant control for flexible spacecraft against partial actuator failures. Nonlinear Dyn. 76, 1753–1760 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Jin, X.Z., Yang, G.H., Chang, X.H.: Robust \(H_\infty \) and adaptive tracking control against actuator faults with a linearised aircraft application. Int. J. Syst. Sci. 44, 151–165 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Jin, X.Z., Yang, G.H., Ye, D.: Insensitive reliable \(H_\infty \) filtering against sensor failures. Inf. Sci. 224, 188–199 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Shen, H., Wu, Z.G., Park, J.H.: Reliable mixed passive and \(H_\infty \) filtering for semi-Markov jump systems with randomly occurring uncertainties and sensor failures. Int. J. Robust Nonlinear Control 25, 3231–3251 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Sakthivel, R., Selvi, S., Mathiyalagan, K.: Reliable robust control design for uncertain mechanical systems. J. Dyn. Syst. Meas. Control 137, 021003 (2015)

    Article  Google Scholar 

  10. Sakthivel, R., Selvi, S., Mathiyalagan, K.: Fault distribution dependent reliable \(H_\infty \) control for Takagi–Sugeno fuzzy systems. J. Dyn. Syst. Meas. Control 136, 021021 (2014)

    Article  Google Scholar 

  11. Fridman, E., Seuret, A., Richard, J.P.: Robust sampled-data stabilization of linear systems: an input delay approach. Automatica 40, 1441–1446 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Shen, H., Park, J.H., Zhang, L., Wu, Z.G.: Robust extended dissipative control for sampled-data Markov jump systems. Int. J. Control 87, 1549–1564 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sakthivel, R., Selvi, S., Mathiyalagan, K.: Fault-tolerant sample-data control of flexible spacecraft with probabilistic time delays. Nonlinear Dyn. 79, 1835–1846 (2015)

    Article  MATH  Google Scholar 

  14. Li, T., Guo, L., Sun, C.Y.: Robust stability for neural networks with time-varing delays and linear fractional uncertainties. Neurocomputing 71, 421–427 (2007)

    Article  Google Scholar 

  15. Gu, K., Kharitonov, V.L., Chen, J.: Stability of Time-Delay Systems. Birkhäuser, Basel (2003)

    Book  MATH  Google Scholar 

  16. Iwasaki, T., Hara, S.: Generalized KYP lemma: unified frequency domain inequality with design applications. IEEE Trans. Autom. Control 50, 41–59 (2005)

    Article  MathSciNet  Google Scholar 

  17. Xie, L.: Output feedback \(H_{\infty }\) control of systems with parameter uncertainty Int. J. Control 63, 741–750 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Feng, Z., Lam, J.: Integral partitioning approach to robust stabilization for uncertain distributed time-delay systems. Int J. Robust Nonlinear Control 22, 676–689 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Du, X., Yang, G.H.: \(H_\infty \) model reduction of linear continuous-time systems over finite-frequency interval. IET Control Theory Appl. 4, 499–508 (2010)

    Article  MathSciNet  Google Scholar 

  20. Du, X., Fan, F., Ding, D.W., Liu, F.: Finite-frequency model order reduction of discrete-time linear time-delayed systems. Nonlinear Dyn. 83, 2485–2496 (2016)

    Article  MathSciNet  Google Scholar 

  21. Ding, D.W., Du, X., Li, X.: Finite-frequency model reduction of two-dimensional digital filters. IEEE Trans. Autom. Control 60, 1624–1629 (2015)

    Article  MathSciNet  Google Scholar 

  22. Sun, W., Gao, H., Kaynak, O.: Finite frequency control for vehicle active suspension systems. IEEE Trans. Control Syst. Technol. 19, 416–422 (2011)

    Article  Google Scholar 

  23. Sun, W., Li, J., Zhao, Y., Gao, H.: Vibration control for active seat suspension systems via dynamic output feedback with limited frequency characteristic. Mechatronics 21, 250–260 (2011)

    Article  Google Scholar 

  24. Li, X., Gao, H.: Robust finite frequency \(H_\infty \) filtering for uncertain 2-D Roesser systems. Automatica 48, 1163–1170 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gao, H., Sun, W., Shi, P.: Robust sampled-data \(H_\infty \) control for vehicle active suspension systems. IEEE Trans. Control Syst. Technol. 18, 238–245 (2010)

    Article  Google Scholar 

  26. Karray, F., Grewal, A., Glaum, M., Modi, V.: Stiffening control of a class of nonlinear affine systems. IEEE Trans. Aerosp. Electron. Syst. 33, 473–484 (1997)

    Article  Google Scholar 

  27. Shen, H., Zhu, Y., Zhang, L., Park, J.H.: Extended dissipative state estimation for Markov jump neural networks with unreliable links. IEEE Trans. Neural Netw. Learn. Syst. (2016). doi:10.1109/TNNLS.2015.2511196

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanghui Sun.

Appendix

Appendix

Case 1 The parameters of finite frequency controller with known actuator faults are given as,

$$\begin{aligned}&A_{kf}=\begin{bmatrix} {\begin{matrix} -1.9084 &{}\quad -0.5485&{}\quad -2.2618&{}\quad 4.7793&{}\quad -5.3205&{}\quad 5.5982 \times 10^4\\ -0.3644&{}\quad -1.1119&{}\quad 0.2949&{}\quad -5.7501&{}\quad -1.6501&{}\quad -1.4542 \times 10^5\\ -2.1981&{}\quad -1.0246&{}\quad -4.4853&{}\quad -4.1386&{}\quad -9.3016&{}\quad -1.6853 \times 10^5\\ -2.3774&{}\quad -0.9291&{}\quad -7.8587&{}\quad 4.4295&{}\quad 6.8004&{}\quad 2.9858 \times 10^5\\ 1.5242&{}\quad 0.4157&{}\quad 8.5532&{}\quad -11.4473&{}\quad -20.4866&{}\quad -6.0065 \times 10^5\\ 0.1042&{}\quad -0.0427&{}\quad 2.2619&{}\quad -11.2116&{}\quad -3.7486&{}\quad -3.1226 \times 10^5 \end{matrix}} \end{bmatrix}\\&B_{kf}=\begin{bmatrix} {\begin{matrix} -0.2614 &{}\quad 0.4596 &{}\quad 0.4904 &{}\quad 0.2835\\ 0.1238 &{}\quad 0.4374 &{}\quad -1.3896 &{}\quad 0.1913\\ -0.3950 &{}\quad 0.5624 &{}\quad -2.4488 &{}\quad -0.2903\\ 0.8451 &{}\quad 0.5588 &{}\quad 0.5419 &{}\quad -0.5421\\ 0.5398 &{}\quad -0.2855 &{}\quad -0.3518 &{}\quad 0.6883\\ -0.0000 &{}\quad -0.0000 &{}\quad -0.8193 &{}\quad 0.1680 \end{matrix}} \end{bmatrix}\times 10^6\\&C_{kf}= \begin{bmatrix} {\begin{matrix} 0&\quad 0&\quad 0&\quad 0.0014&\quad 0&\quad 39.0605 \end{matrix}} \end{bmatrix},\\&A_{\tau f}=\begin{bmatrix} {\begin{matrix} 0.1002 &{}\quad -0.6474 &{}\quad -0.5648 &{}\quad 36.8033 &{}\quad -1.2979 &{}\quad 1.012 \times 10^6\\ -0.0860 &{}\quad 0.5556 &{}\quad 0.4847 &{}\quad -31.5829 &{}\quad 1.1138 &{}\quad -8.6859 \times 10^5\\ -0.0392 &{}\quad 0.2535 &{}\quad 0.2212 &{}\quad -14.4102 &{}\quad 0.5082 &{}\quad -3.9631 \times 10^5\\ 0.0083 &{}\quad -0.0535 &{}\quad -0.0466 &{}\quad 3.0396 &{}\quad -0.1072 &{}\quad 8.3593 \times 10^4\\ -0.0015 &{}\quad 0.0097 &{}\quad 0.0085 &{}\quad -0.5509 &{}\quad 0.0194 &{}\quad -1.5149 \times 10^4\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad -0.0004 &{}\quad 0 &{}\quad -12.0251 \end{matrix}} \end{bmatrix}. \end{aligned}$$

The parameters of entire frequency controller with known actuator faults are given as,

$$\begin{aligned}&A_{ke}=\begin{bmatrix} {\begin{matrix} -7.5595 &{}\quad -4.0848 &{}\quad -6.5670 &{}\quad -4.0654 &{}\quad 30.6147 &{}\quad -2.0082 \times 10^8\\ 1.8485 &{}\quad -1.2923 &{}\quad 0.1648 &{}\quad -0.3071 &{}\quad 15.1398 &{}\quad -5.8785 \times 10^7\\ 9.1490 &{}\quad 4.5842 &{}\quad 0.4777 &{}\quad 0.6544 &{}\quad 76.4976 &{}\quad -2.7089 \times 10^8\\ 0.5217 &{}\quad 0.0866 &{}\quad 3.8286 &{}\quad -1.2898 &{}\quad 35.4406 &{}\quad -1.3394 \times 10^8\\ 1.5002 &{}\quad -1.9475 &{}\quad -9.6072 &{}\quad -7.3491 &{}\quad 141.2726 &{}\quad -6.6249 \times 10^8\\ 0.1372 &{}\quad -0.4602 &{}\quad 0.7063 &{}\quad -2.0482 &{}\quad 61.8560 &{}\quad -2.6860 \times 10^8 \end{matrix}} \end{bmatrix}\\&B_{ke}=\begin{bmatrix} {\begin{matrix} -0.6489 &{}\quad 0.1281 &{}\quad -1.6354 &{}\quad -0.2057\\ -0.9687 &{}\quad 0.7333 &{}\quad -0.7875 &{}\quad 0.4680\\ -0.4744 &{}\quad -1.1976 &{}\quad -0.0590 &{}\quad 0.3968\\ 0.8568 &{}\quad 0.3328 &{}\quad -0.7629 &{}\quad -0.0094\\ 0.5501 &{}\quad 0.0532 &{}\quad -0.0631 &{}\quad 0.9923\\ 0.0195 &{}\quad 0.0011 &{}\quad -0.5158 &{}\quad 0.2205 \end{matrix}} \end{bmatrix}\times 10^8\\&C_{ke}= \begin{bmatrix} {\begin{matrix} 0&\quad 0&\quad 0&\quad 0&\quad 0&\quad 32.7613 \end{matrix}} \end{bmatrix},\\&A_{\tau e}=\begin{bmatrix} {\begin{matrix} -0.0596 &{}\quad -0.0237 &{}\quad 0.7586 &{}\quad -0.1098 &{}\quad 8.5522 &{}\quad -3.3663 \times 10^7\\ -0.0245 &{}\quad -0.0098 &{}\quad 0.3122 &{}\quad -0.0452 &{}\quad 3.5196 &{}\quad -1.3854 \times 10^7\\ -0.0479 &{}\quad -0.0191 &{}\quad 0.6097 &{}\quad -0.0883 &{}\quad 6.8740 &{}\quad -2.7057 \times 10^7\\ -0.1229 &{}\quad -0.0490 &{}\quad 1.5653 &{}\quad -0.2266 &{}\quad 17.6463 &{}\quad -6.9458 \times 10^7\\ 0.0681 &{}\quad 0.0271 &{}\quad -0.8674 &{}\quad 0.1256 &{}\quad -9.7785 &{}\quad 3.8489 \times 10^7\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 8.7615 \end{matrix}} \end{bmatrix}. \end{aligned}$$

The parameters of finite frequency controller with unknown actuator faults are exhibited as,

$$\begin{aligned}&A_{kf}=\begin{bmatrix} {\begin{matrix} -0.8201 &{}\quad 0.06506 &{}\quad 6.3185 &{}\quad 28.3590 &{}\quad -1.3034 \times 10^6 &{}\quad -5.1594 \times 10^6\\ -0.0111 &{}\quad -0.8366 &{}\quad 6.2913 &{}\quad 10.0456 &{}\quad -2.5424 \times 10^5 &{}\quad -1.0060 \times 10^6\\ 0.09703 &{}\quad -0.6153 &{}\quad -194.9919 &{}\quad -312.5761 &{}\quad 1.7059 \times 10^6 &{}\quad 6.7569 \times 10^6\\ -0.0579 &{}\quad 0.5034 &{}\quad 106.2091 &{}\quad 67.2846 &{}\quad -1.3178 \times 10^6 &{}\quad -5.1872 \times 10^6\\ -0.5429 &{}\quad 1.4823 &{}\quad 275.8638 &{}\quad 613.6358 &{}\quad -1.6773 \times 10^7 &{}\quad -6.6399 \times 10^7\\ -0.3123 &{}\quad 0.8539 &{}\quad 158.9534 &{}\quad 352.9242 &{}\quad -9.6451 \times 10^6 &{}\quad -3.8182 \times 10^7 \end{matrix}} \end{bmatrix}\\&B_{kf}=\begin{bmatrix} {\begin{matrix} -1.0100 &{}\quad -0.0040 &{}\quad -0.9836 &{}\quad 0.0506\\ 0.0171 &{}\quad 0.4343 &{}\quad 0.0161 &{}\quad 0.4809\\ -0.0185 &{}\quad -0.1543 &{}\quad 2.0560 &{}\quad 0.9519\\ 0.0129 &{}\quad 0.0004 &{}\quad -0.9999 &{}\quad -0.4948\\ -0.0224 &{}\quad 0.0015 &{}\quad 1.3474 &{}\quad -0.5009\\ -0.0128 &{}\quad 0.0009 &{}\quad 0.7706 &{}\quad -0.2898 \end{matrix}} \end{bmatrix}\times 10^8\\&C_{kf}= \begin{bmatrix} {\begin{matrix} 0&\quad 0&\quad 0&\quad 0&\quad -0.9191&\quad -7.7810 \end{matrix}} \end{bmatrix},\quad A_{\tau f}=\begin{bmatrix} {\begin{matrix} 0 &{}\quad 0 &{}\quad 0 &{}\quad 0.0001 &{}\quad -13.2195 &{}\quad -35.2674\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad -0.0001 &{}\quad 3.8839 &{}\quad 9.9619\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0.0008 &{}\quad -108.3447 &{}\quad -317.7968\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad -0.0002 &{}\quad 38.3949 &{}\quad 116.3583\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad -0.9020 &{}\quad -4.8692\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0.0392 &{}\quad -0.3660 \end{matrix}} \end{bmatrix}. \end{aligned}$$

The parameters of entire frequency controller with unknown actuator faults are exhibited as,

$$\begin{aligned}&A_{ke}=\begin{bmatrix} {\begin{matrix} -1.9176 &{}\quad 0.0570 &{}\quad 45.1981 &{}\quad 200.8648 &{}\quad 1.0985 \times 10^6 &{}\quad 1.4919 \times 10^7\\ -0.4629 &{}\quad -1.5166 &{}\quad 1.0054 &{}\quad -147.6034 &{}\quad -6.9664 \times 10^5 &{}\quad -9.4316 \times 10^6\\ -0.4488 &{}\quad -3.1324 &{}\quad -245.4182 &{}\quad 190.8722 &{}\quad -1.5363 \times 10^6 &{}\quad -2.0839 \times 10^7\\ -0.3115 &{}\quad -1.0115 &{}\quad -91.9749 &{}\quad -103.9126 &{}\quad -7.6268 \times 10^5 &{}\quad -1.0421 \times 10^7\\ 1.0608 &{}\quad 3.3786 &{}\quad 290.7369 &{}\quad 825.19449 &{}\quad 6.0406 \times 10^6 &{}\quad 8.1933 \times 10^7\\ -1.0339 &{}\quad -3.2930 &{}\quad -283.4022 &{}\quad -803.6034 &{}\quad -5.8825 \times 10^6 &{}\quad -7.9789 \times 10^7 \end{matrix}} \end{bmatrix}\\&B_{ke}=\begin{bmatrix} {\begin{matrix} -0.8598 &{}\quad 1.1179 &{}\quad -0.2875 &{}\quad 0.4324\\ 1.6197 &{}\quad 0.6221 &{}\quad 0.5496 &{}\quad 0.1125\\ 0.0186 &{}\quad -0.1750 &{}\quad 2.2413 &{}\quad 1.1957\\ 0.0069 &{}\quad 0.0000 &{}\quad 0.6529 &{}\quad 0.4051\\ -0.0115 &{}\quad 0.0046 &{}\quad 1.2581 &{}\quad -0.5546\\ 0.0113 &{}\quad -0.0044 &{}\quad -1.2211 &{}\quad 0.5418 \end{matrix}} \end{bmatrix}\times 10^8\\&C_{ke}= \begin{bmatrix} {\begin{matrix} 0&0&0&0&0.3667&5.5185 \end{matrix}} \end{bmatrix},\\&A_{\tau e}=\begin{bmatrix} {\begin{matrix} 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad -0.0465 &{}\quad -8.2361\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad -0.0001 &{}\quad -0.2861 &{}\quad -26.9659\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0.0001 &{}\quad 0.3826 &{}\quad 14.9930\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad -0.0001 &{}\quad -0.2783 &{}\quad -38.2843\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0.1485 &{}\quad 1.6116\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad -0.0729 &{}\quad -1.0502 \end{matrix}} \end{bmatrix}. \end{aligned}$$

Case 2 The parameters of finite frequency controller for system with LFT uncertainty are given as,

$$\begin{aligned}&A_{kf}=\begin{bmatrix} {\begin{matrix} -0.1999 &{}\quad -0.4158 &{}\quad -0.0543 &{}\quad 0.1084 &{}\quad -0.2977 &{}\quad 2.1492\\ -0.1525 &{}\quad -1.1674 &{}\quad 0.0162 &{}\quad 0.9697 &{}\quad -1.0464 &{}\quad 7.7376\\ -0.0268 &{}\quad -0.4417 &{}\quad -0.4588 &{}\quad 0.5287 &{}\quad -0.6117 &{}\quad 4.5844\\ -0.1758 &{}\quad 1.0414 &{}\quad 0.0412 &{}\quad -1.4142 &{}\quad 1.2317 &{}\quad -8.9301\\ 0.0319 &{}\quad -0.8673 &{}\quad -0.0185 &{}\quad 0.9488 &{}\quad -1.5780 &{}\quad 8.2205\\ 0.0071 &{}\quad 0.2740 &{}\quad 0.0568 &{}\quad -0.2898 &{}\quad 0.3284 &{}\quad -2.2539 \end{matrix}} \end{bmatrix}\times 10^5\\&B_{kf}=\begin{bmatrix} {\begin{matrix} -0.4041 &{}\quad 0.5281 &{}\quad -0.2757 &{}\quad 0.0836\\ 0.2327 &{}\quad 0.4674 &{}\quad -0.3559 &{}\quad 0.5663\\ 0.5950 &{}\quad 0.1351 &{}\quad -1.9036 &{}\quad -0.3664\\ -1.1911 &{}\quad 0.3667 &{}\quad 0.7553 &{}\quad -0.5119\\ -1.7558 &{}\quad -0.2613 &{}\quad -1.1571 &{}\quad 0.2813\\ -0.0758 &{}\quad -0.0297 &{}\quad 0.3656 &{}\quad -0.0565 \end{matrix}} \end{bmatrix}\times 10^7\\&C_{kf}= \begin{bmatrix} {\begin{matrix} 0.3934&\quad 0.3355&\quad -0.0688&\quad -1.2613&\quad 1.2271&\quad -8.2417 \end{matrix}} \end{bmatrix},\\&A_{\tau f}=\begin{bmatrix} {\begin{matrix} 0.6842 &{}\quad 0.5841 &{}\quad -0.1187 &{}\quad -2.1935 &{}\quad 2.1336 &{}\quad -14.2853\\ -1.8527 &{}\quad -1.5776 &{}\quad 0.3232 &{}\quad 5.9354 &{}\quad -5.7756 &{}\quad 38.8423\\ -0.9534 &{}\quad -0.8114 &{}\quad 0.1665 &{}\quad 3.0538 &{}\quad -2.9718 &{}\quad 20.0023\\ 0.8113 &{}\quad 0.6891 &{}\quad -0.1423 &{}\quad -2.5974 &{}\quad 2.5283 &{}\quad -17.0758\\ -1.2700 &{}\quad -1.0804 &{}\quad 0.2220 &{}\quad 4.0676 &{}\quad -3.9586 &{}\quad 26.6640\\ -0.1456 &{}\quad -0.1249 &{}\quad 0.0252 &{}\quad 0.4677 &{}\quad -0.4545 &{}\quad 3.0247 \end{matrix}} \end{bmatrix}. \end{aligned}$$

The parameters of entire frequency controller for system with LFT uncertainty are given as,

$$\begin{aligned}&A_{ke}=\begin{bmatrix} {\begin{matrix} -0.0058 &{}\quad 0.0147 &{}\quad 0.0157 &{}\quad -0.0620 &{}\quad 0.7735 &{}\quad -3.6935\\ 0.0083 &{}\quad -0.0232 &{}\quad 0.0146 &{}\quad -0.0553 &{}\quad 0.6648 &{}\quad -3.2361\\ -0.0012 &{}\quad -0.0003 &{}\quad -0.0343 &{}\quad 0.0008 &{}\quad -0.0113 &{}\quad 0.0506\\ 0.0088 &{}\quad 0.0139 &{}\quad 0.0185 &{}\quad -0.1039 &{}\quad 0.8365 &{}\quad -4.0756\\ 0.0054 &{}\quad -0.0189 &{}\quad -0.0289 &{}\quad 0.1077 &{}\quad -1.2886 &{}\quad 6.1717\\ 0.0013 &{}\quad 0.0015 &{}\quad 0.0073 &{}\quad -0.0332 &{}\quad 0.3452 &{}\quad -1.6683 \end{matrix}} \end{bmatrix}\times 10^5\\&B_{ke}=\begin{bmatrix} {\begin{matrix} -1.7257 &{}\quad -0.3345 &{}\quad -4.6848 &{}\quad 0.2467\\ -1.9493 &{}\quad -0.1454 &{}\quad 1.7504 &{}\quad 2.6243\\ 2.4390 &{}\quad -2.5322 &{}\quad 0.2752 &{}\quad 0.0822\\ 6.3127 &{}\quad 0.7547 &{}\quad -3.0940 &{}\quad 1.1231\\ 2.1842 &{}\quad 0.2484 &{}\quad 6.6670 &{}\quad -0.8867\\ 0.3408 &{}\quad 0.0253 &{}\quad -1.0382 &{}\quad 0.5539 \end{matrix}} \end{bmatrix}\times 10^5\\&C_{ke}= \begin{bmatrix} {\begin{matrix} 0.0170&\quad -0.0481&\quad -0.0442&\quad 0.1454&\quad -1.8322&\quad 7.8578 \end{matrix}} \end{bmatrix},\\&A_{\tau e}=\begin{bmatrix} {\begin{matrix} 0.0089 &{}\quad -0.0256 &{}\quad -0.0220 &{}\quad 0.0972 &{}\quad -0.8880 &{}\quad 4.7125\\ -0.0092 &{}\quad 0.0262 &{}\quad 0.0239 &{}\quad -0.0812 &{}\quad 0.9865 &{}\quad -4.3344\\ -0.0010 &{}\quad 0.0028 &{}\quad 0.0025 &{}\quad -0.0097 &{}\quad 0.1012 &{}\quad -0.4902\\ -0.0129 &{}\quad 0.0367 &{}\quad 0.0334 &{}\quad -0.1147 &{}\quad 1.3768 &{}\quad -6.0978\\ 0.0362 &{}\quad -0.1030 &{}\quad -0.0926 &{}\quad 0.3370 &{}\quad -3.8046 &{}\quad 17.5208\\ 0.0067 &{}\quad -0.0190 &{}\quad -0.0170 &{}\quad 0.0627 &{}\quad -0.6982 &{}\quad 3.2470 \end{matrix}} \end{bmatrix}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Sun, G. & Sun, W. Reliable sampled-data vibration control for uncertain flexible spacecraft with frequency range limitation. Nonlinear Dyn 86, 1117–1135 (2016). https://doi.org/10.1007/s11071-016-2952-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2952-5

Keywords

Navigation