Skip to main content
Log in

Adaptive backstepping output feedback control for a class of nonlinear fractional order systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This article presents a novel fractional order adaptive backstepping output feedback control scheme for nonlinear fractional order systems. The needed feedback information is constructed via a state estimation filter. To improve the control performance, tracking differentiators, nonlinear elements and fractional order update laws were introduced and applied to the control systems. With the aids of this frequency distribute model and the indirect Lyapunov method, the stability and the tracking convergence of the resulting closed-loop system were established. A careful simulation study was provided to illustrate the effectiveness of this novel scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Freeborn, T.J., Maundy, B., Elwakil, A.S.: Fractional-order models of supercapacitors, batteries and fuel cells: a survey. Mater. Renew. Sustain. Energy 4(3), 1–7 (2015)

    Article  Google Scholar 

  2. Gao, Z.: Robust stabilization criterion of fractional-order controllers for interval fractional-order plants. Automatica 61, 9–17 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Monje, C.A., Chen, Y.Q., Vinagre, B.M., Xue, D.Y., Feliu, V.: Fractional-Order Systems and Controls: Fundamentals and Applications. Springer, London (2010)

    Book  MATH  Google Scholar 

  4. Atanackovic, T.M., Pilipovic, S., Stankovic, B., Zorica, D.: Fractional Calculus with Applications in Mechanics: Wave Propagation. Impact and Variational Principles. ISTE Ltd, London (2014)

    Book  MATH  Google Scholar 

  5. Oustaloup, A.: Diversity and Non-Integer Differentiation for System Dynamics. ISTE Ltd, London (2014)

    Book  MATH  Google Scholar 

  6. Chen, Y.Q., Vinagre, B.M., Podlubny, I.: Continued fraction expansion approaches to discretizing fractional order derivatives—an expository review. Nonlinear Dyn. 38(1–4), 155–170 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Efe, M.Ö.: Fractional order systems in industrial automation—a survey. IEEE Trans. Ind. Inform. 7(4), 582–591 (2011)

    Article  Google Scholar 

  8. Podlubny, I.: Fractional-order systems and PI\(^\lambda \)D\(^\mu \) controllers. IEEE Trans. Autom. Control 44(1), 208–214 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Sabatier, J., Oustaloup, A., Iturricha, A.G., Patrick, L.: CRONE control: principles and extension to time-variant plants with asymptotically constant coefficients. Nonlinear Dyn. 29(1–4), 363–385 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Yin, C., Chen, Y.Q., Zhong, S.M.: Fractional-order sliding mode based extremum seeking control of a class of nonlinear systems. Automatica 50(12), 3173–3181 (2014)

  11. Ladaci, S., Charef, A.: On fractional adaptive control. Nonlinear Dyn. 43(4), 365–378 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhou, J., Wen, C.Y.: Adaptive Backstepping Control of Uncertain Systems: Nonsmooth Nonlinearities. Interactions or Time-variations. Springer, Berlin (2008)

    MATH  Google Scholar 

  13. Efe, M.Ö.: Backstepping control technique for fractional order systems. In: The 3rd Conference on Nonlinear Science and Complexity (NSC 2010), Paper no. 105. Ankara, Turkey (2010)

  14. Sahab, A.R., Ziabari, M.T., Modabbernia, M.R.: A novel fractional-order hyperchaotic system with a quadratic exponential nonlinear term and its synchronization. Adv. Differ. Equ. (2012). doi:10.1186/1687-1847-2012-194

    MathSciNet  Google Scholar 

  15. Shahiri, T.M., Ranjbar, A., Ghaderi, R., Karami, M., Hosseinnia, S.H.: Adaptive backstepping chaos synchronization of fractional order coullet systems with mismatched parameters. In: The 4th IFAC Workshop Fractional Differentiation and its Applications (FDA 2010), No. FDA10-104. Badajoz, Spain (2010)

  16. Ding, D.S., Qi, D.L., Wang, Q.: Non-linear Mittag–Leffler stabilisation of commensurate fractional-order non-linear systems. IET Control Theory Appl. 9(5), 681–690 (2014)

  17. Ding, D.S., Qi, D.L., Peng, J.M., Wang, Q.: Asymptotic pseudo-state stabilization of commensurate fractional-order nonlinear systems with additive disturbance. Nonlinear Dyn. 81(1), 667–677 (2015)

  18. Aguila-Camacho, N., Duarte-Mermoud, M.A., Gallegos, J.A.: Lyapunov functions for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 19(9), 2951–2957 (2014)

    Article  MathSciNet  Google Scholar 

  19. Duarte-Mermoud, M.A., Aguila-Camacho, N., Gallegos, J.A., Castro-Linares, R.: Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 22(1), 650–659 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Trigeassou, J.C., Maamri, N., Sabatier, J., Oustaloup, A.: A Lyapunov approach to the stability of fractional differential equations. Signal Process. 91(3), 437–445 (2011)

    Article  MATH  Google Scholar 

  21. Wei, Y.H., Chen, Y.Q., Liang, S., Wang, Y.: A novel algorithm on adaptive backstepping control of fractional order systems. Neurocomputing 165, 395–402 (2015)

    Article  Google Scholar 

  22. Matignon, D.: Diffusive representation of pseduo-differential time-operators. In: Fractional Differential Systems: Models, Methods and Applications (FDS’98), pp. 145–158. Toulouse, France

  23. Trigeassou, J.C., Maamri, N., Sabatier, J., Oustaloup, A.: Transients of fractional-order integrator and derivatives. Signal Image Video Process. 6(3), 359–372 (2012)

    Article  MATH  Google Scholar 

  24. Wei, Y.H., Du, B., Cheng, S.S., Wang, Y.: Fractional order systems time-optimal control and its application. J. Optim. Theory Appl. (2015). doi:10.1007/s10957-015-0851-4

    Google Scholar 

  25. Han, J.Q.: From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 56(3), 900–906 (2009)

    Article  Google Scholar 

  26. Kang, Y., Zhai, D.H., Liu, G.P., Zhao, Y.B., Zhao, P.: Stability analysis of a class of hybrid stochastic retarded systems under asynchronous switching. IEEE Trans. Autom. Control 59(6), 1511–1523 (2014)

  27. Kang, Y., Zhai, D.H., Liu, G.P., Zhao, Y.B.: On input-to-state stability of switched stochastic nonlinear systems under extended asynchronous switching. IEEE Trans. Cybern. 46(5), 1092–1105 (2016)

  28. Wei, Y.H., Gao, Q., Peng, C., Wang, Y.: A rational approximate method to fractional order systems. Int. J. Control Autom. Syst. 12(6), 1180–1186 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Associate Editor and the anonymous reviewers for their keen and insightful comments which greatly improved the contents and the presentation of this article significantly. The work described in this paper was fully supported by the Research Grants Council (Project No. CityU 11201315), the Innovation and Technology Commission (ITC) (Project No. ITS/061/14FP) of the Government of the Hong Kong Special Administrative Region (HKSAR), China, the National Natural Science Foundation of China (Project No. 61573332) and the Fundamental Research Funds for the Central Universities (Project No. WK2100100028). Any opinions, findings, conclusions or recommendations expressed in this material/event (or by members of the project team) do not reflect the views of the Government of the HKSAR, the ITC or the Panel of Assessors for the Innovation and Technology Support Program of the Innovation and Technology Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter W. Tse.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Tse, P.W., Yao, Z. et al. Adaptive backstepping output feedback control for a class of nonlinear fractional order systems. Nonlinear Dyn 86, 1047–1056 (2016). https://doi.org/10.1007/s11071-016-2945-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2945-4

Keywords

Navigation