Skip to main content
Log in

Nonlinear dynamics of a generalized higher-order nonlinear Schrödinger equation with a periodic external perturbation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The nonlinear dynamics of a generalized higher-order nonlinear Schrödinger (HNLS) equation with a periodic external perturbation is investigated numerically. Via the phase plane analysis, we find that both the homoclinic orbits and heteroclinic orbits can exist for the unperturbed HNLS equation under certain conditions, which respectively corresponds to the bell-shaped and kink-shaped soliton solutions. Moreover, under the effect of the periodic external perturbation, the quasi-periodic bifurcations arise and can evolve into the chaos. The dynamical responses of the perturbed system varying with the perturbation strength and two types of chaotic attractors are discussed to show the existence of the chaotic motions. Via the feedback control methods, such chaotic motions are found to be controlled effectively and finally evolve into the stable quasi-periodic orbits. All the results are helpful to understand the dynamical properties of the nonlinear system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cox, E.A., Mortell, M.P.: The evolution of resonant water-wave oscillations. J. Fluid Mech. 162, 99–116 (1986)

    MathSciNet  MATH  Google Scholar 

  2. Wu, T.Y.: Generation of upstream advancing solitons by moving disturbances. J. Fluid Mech. 184, 75–99 (1987)

    MathSciNet  MATH  Google Scholar 

  3. Akylas, T.R.: On the excitation of long nonlinear water waves by a moving pressure distribution. J. Fluid Mech. 141, 455–466 (1984)

    MathSciNet  MATH  Google Scholar 

  4. Zhuang, K.G., Du, Z.J., Lin, X.J.: Solitary waves solutions of singularly perturbed higher-order KdV equation via geometric singular perturbation method. Nonlinear Dyn. 80, 629–635 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Charles Li, Y.: Homoclinic tubes and chaos in perturbed. Chaos Solitons Fractals 20, 791–798 (2004)

    MathSciNet  MATH  Google Scholar 

  6. Morales, G.J., Lee, Y.C.: Ponderomotive-force effects in a nonuniform plasma. Phys. Rev. Lett. 33, 1016 (1974)

    Google Scholar 

  7. Moon, H.T.: Homoclinic crossings and pattern selection. Phys. Rev. Lett. 64, 412 (1990)

    Google Scholar 

  8. Zheng, D.J., Yeh, W.J., Symko, O.G.: Period doubling in a perturbed sine-Gordon system, a long Josephson junction. Phys. Lett. A 140, 225–228 (1989)

    Google Scholar 

  9. Bishop, A.R., Flesch, R., Forest, M.G., McLaughlin, D.W., Overman, E.A.: Correlations between chaos in a perturbed sine-Gordon equation and a truncated model system. SIAM J. Math. Anal. 21, 1511–1536 (1990)

    MathSciNet  MATH  Google Scholar 

  10. Blyuss, K.B.: Chaotic behaviour of nonlinear waves and solitons of perturbed Korteweg–de Vries equation. Rep. Math. Phys. 46, 47–54 (2000)

    MathSciNet  MATH  Google Scholar 

  11. Haller, G.: Homoclinic jumping in the perturbed nonlinear Schrödinger equation. Commun. Pure Appl. Math. 52, 1–47 (1999)

    MathSciNet  MATH  Google Scholar 

  12. Bishop, A.R., Forest, M.G., McLaughlin, D.W., Overman, E.A.: A modal representation of chaotic attractors for the driven, damped pendulum chain. Phys. Lett. A 144, 17–25 (1990)

    Google Scholar 

  13. Haller, G., Wiggins, S.: Multi-pulse jumping orbits and homoclinic trees in a modal truncation of the damped-forced nonlinear Schrödinger equation. Phys. D 85, 311–347 (1995)

    MathSciNet  MATH  Google Scholar 

  14. Agrawal, G.P.: Nonlinear Fiber Optics. Academic, California (2002)

    MATH  Google Scholar 

  15. Porsezian, K.: Soliton models in resonant and nonresonant optical fibers. Pramāna 57, 1003–1039 (2001)

    Google Scholar 

  16. Hirota, R.: Exact envelope-soliton solutions of a nonlinear wave equation. J. Math. Phys. 14, 805–809 (1973)

    MathSciNet  MATH  Google Scholar 

  17. Sasa, N., Satsuma, J.: New-type of soliton solutions for a higher-order nonlinear Schrödinger equation. J. Phys. Soc. Jpn. 60, 409–417 (1991)

  18. Xu, Z.Y., Li, L., Li, Z.H., Zhou, G.S.: Soliton interaction under the influence of higher-order effects. Opt. Commun. 210, 375–384 (2002)

    Google Scholar 

  19. Gilson, C., Hietarinta, J., Nimmo, J., Ohta, Y.: Sasa–Satsuma higher-order nonlinear Schrödinger equation and its bilinearization and multisoliton solutions. Phys. Rev. E 68, 016614 (2008)

    MathSciNet  Google Scholar 

  20. Palacios, S.L., Guinea, A., Fernández, J.M., Crespo, R.D.: Dark solitary waves in the nonlinear Schrödinger equation with third order dispersion, self-steepening, and self-frequency shift. Phys. Rev. E 60, R45–R47 (1999)

    Google Scholar 

  21. Jiang, Y., Tian, B., Li, M., Wang, P.: Bright hump solitons for the higher-order nonlinear Schröinger equation in optical fibers. Nonlinear Dyn. 74, 1053–1063 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Xu, J., Fan, E.: The unified transform method for the Sasa–Satsuma equation on the half-line. Proc. R. Soc. A 469, 20130068 (2013)

    MathSciNet  Google Scholar 

  23. Korsch, H.J., Jodl, H.J., Hartmann, T.: Chaos. Springer, Berlin (2008)

    Google Scholar 

  24. Georgiev, Z.D.: Analysis and synthesis of oscillator systems described by perturbed single well Duffing equations. Nonlinear Dyn. 62, 883–893 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Liu, S.D., Liu, S.K.: Soliton Wave and Turbulence. (Chinese version) Shanghai, Shanghai Scientific and Technological Education (1994)

  26. Infeld, E., Rowlands, G.: Nonlinear Waves, Solitons and Chaos. Cambridge Univ, Cambridge (2000)

  27. Biswas, A., Song, M., Zerrad, E.: Bifurcation analysis and implicit solution of Klein-Gordon equation with dual-power law nonlinearity in relativistic quantum mechanics. Int. J. Nonlinear Sci. Numer. Simul. 14, 317 (2013)

  28. Song, M., Liu, Z.R., Biswas, A.: Soliton solution and bifurcation analysis of the KP-Benjamin-Bona-Mahoney equation with power law nonlinearity. Nonlinear Anal. Model. Control 20, 417 (2015)

  29. Kakmeni, F., Bowong, S., Tchawoua, C., Kaptouom, E.: Strange attractors and chaos control in a Duffing–van der Pol oscillator with two external periodic forces. J. Sound Vib. 227, 783–799 (2004)

    MathSciNet  MATH  Google Scholar 

  30. Shi, Y.X., Bai, D.Y., Tao, W.J.: Chaos and control of the Duffing–van der Pole equation with two external periodic excitations. J. Hebei Normal Univ. 34, 631–635 (2010)

    Google Scholar 

Download references

Acknowledgments

This work has been supported by the Fundamental Research Funds of the Central Universities (Project Nos. 2014QN30, 2014ZZD10 and 2015ZD16), by the National Natural Science Foundations of China (Grant Nos. 61505054, 11426105, 11305060 and 11371371), by the Postdoctoral Science Foundation of China (2014T70061) and by the Higher-Level Item Cultivation Project of Beijing Wuzi University (No. GJB20141001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Wang, L. & Qi, FH. Nonlinear dynamics of a generalized higher-order nonlinear Schrödinger equation with a periodic external perturbation. Nonlinear Dyn 86, 535–541 (2016). https://doi.org/10.1007/s11071-016-2906-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2906-y

Keywords

Navigation